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Abstract

Our work investigates the use of a Near InfraRed
Spectroscopy scanner for the identification of liquids.
While previous work has shown promising results for
the identification of solid objects, identifying liquids poses
additional challenges.  These challenges include light
scattering and low reflectance caused by the transparency
of liquids, which interfere with the infrared measurement.
We develop a prototype solution consisting of a 3D printed
clamp that attaches to a tube, such that it blocks ambient
light from interfering. Our preliminary results indicate that
our prototype works, and we demonstrate this by measuring
sugar levels in a liquid solution.
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Introduction

Given the recent advances in deep learning, computer
vision can outperform humans in several object identification
tasks [3]. However, previous research focuses mostly on
solid-state objects identification, whereas the identification of
liquids remains under-explored. Vision-based approaches to
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Figure 1: Texas Instruments DLP
NIRscan EVM.

identify liquids are likely to be imprecise, due to the lack of
physical form of liquids, and their generic color which can
often be affected by ambient light.

One promising direction for liquid identification is through
the analysis of the liquid’s chemical composition. Obtaining
chemical composition information of an object readily and
rapidly, however, is in itself another challenge [1]. In this
study, we explore the possibility of using a recently released
miniaturized Near InfraRed Spectroscopy (NIRS) scanner.
The device emits Near InfraRed (NIR) light that penetrates
the surface of samples and is reflected or absorbed by the
object’s molecules. The reflected light is then captured and
forms a spectrum with respect to the chemical composition,
resulting in a chemical fingerprint that can be used to identify
objects, including liquids.

Conventionally, NIRS requires a dedicated device operated
by professionals. However, current miniaturized NIRS
scanners offer the possibility for non-professionals to access
this technique in a ubiquitous context [7]. Previous work
has shown great examples of non-professionals utilizing this
device [10]. Specifically, Klakegg et al. have demonstrated
that nurses could use this technique to accurately identify
pills [9]. Nevertheless, their work focused on identification
of solid objects in daily life, meanwhile the identification
of non-solid objects, specifically liquids, remains an open
challenge.

In this paper, we present a prototype that extends the
capabilities of a miniaturized NIRS scanner to identify liquids.
The scanner (Texas Instruments DLP NIRscan EVM [7]
as shown in Figure 1) weighs 80 grams and costs less
than 1000 USD for an evaluation kit. We expect this
device to become cheaper following mass production. To
demonstrate our prototype’s capabilities in identifying liquids,
we conducted an experiment with solutions of different

sugar concentrations (common sucrose). Our results show
the feasibility of our prototype being used for analyzing
sugar levels in a solution. We are currently exploring
a wider range of applications, including identifying liquids
in intravenous therapy (IV), syringes, or drinks containing
alcohol. Therefore, we envision great potential in enclosing
a miniaturized NIRS scanner into a tool for tasks that require
chemical information of objects in a Ubicomp context.

Related Work

Our work is rooted in related research focusing on the use
of NIRS, light characteristics, and more general on the liquid
identification of chemical compositions.

Near Infrared Spectroscopy

NIRS is a fast and non-destructive sensing technique
which is conventionally used for composition analysis in
chemistry. The whole process takes less than 10 seconds,
requiring only few samples, and can be directly performed
in situ [12]. Scanning takes place by transmitting light
beams with different wavelengths (780 nm ~ 2500 nm). At
different wavelengths, variations of reflectance/absorbance
by the chemical composition of the object result into a NIR
spectrum. By analyzing this obtained spectrum, the scanned
object’s chemical information can be extracted.

NIRS has been successfully adopted in various industrial
fields for decades such as agriculture, chemistry and
pharmacy [12]. A range of applications were built on top
of this technique. For example, in agriculture NIRS was
used for monitoring the quality of food, such as freshness
of minced beef [13]. In medicine, NIRS has been widely
adopted for non-invasive detection of human hemoglobin
(Hb) and other characteristics, thanks to its ability to
penetrate bones and tissues [11].
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Figure 2: 3D printed clamp for
miniaturized NIRS scanner (top),
inner surface of clamp (middle) and
side view (bottom).

Liquid Identification

Liquid identification includes both qualitative and quantitative
analysis. The qualitative analysis aims to identify the
category of liquids, while quantitative analysis attempts to
quantify the concentration of compounds. In addition to
NIRS, there are several alternative methods for identifying
liquids. One of the most popular methods is the Drop
Analysis Technology (DAT). The first DAT method, called
Fiber Drop Analysis (FDA), was introduced by McMillan
et al. in 1992 [14]. The authors identified liquids by
studying intensity of lights that passed through the liquid drop
pumped by a special head placed between two optical fibers.
Subsequent studies of DAT used different sensing methods,
including Capacitive Drop Analysis (CDA), Fiber-Capacitive
Drop Analysis (FCDA), Image Drop Analysis (IDA) [14], and
microwave sensing [6]. Nevertheless, DAT requires sampling
using capillary tubes in a well-controlled experimental
environment, whereas the NIRS technique can provide more
detailed information in a timely manner in situ, and thus has
important advantages over the DAT technique.

There are other liquid identification techniques that do
not involve drop analysis. Compared to NIRS on a
miniaturized scanner, most of the alternative methods
provide limited advantages in liquid identification.  For
example, a refractometer is widely used in the agricultural
sector to measure the sugar content in wines and juices.
Yet it can only provide information on sugar concentration,
and requires a small amount of samples (< 1 ml) to cover
a sample well [4], which constrains its usage scenarios.
Although graphene test papers can recognize a nhumber of
complex liquids with flexible shapes, it requires direct contact
with the liquid [8]. Josephson Spectroscopy, similar to the
NIRS technique, utilizes electromagnetic waves in the range
of a few GHz to a few THz, but is only able to provide coarse
chemical information with a high Signal-to-Noise Ratio

(SNR) requirement [2]. An inkjet-printed Radio Frequency
(RF) microstrip, introduced by Hassan et al., can only identify
specific liquids such as water, ethanol, water/ethanol 50:50
mixture and synthetic engine oil [5]. In summary, most of
the alternative techniques are rather bulky or costly, and are
limited to a relatively small application niche. Our devised
prototype addresses these shortcomings by exploring the
state-of-the-art NIRS technique using a 3D printed clamp,
providing a readily and rapidly liquid identification that can
be used in wide deployment.

Challenges in Identifying Liquids

In addition to the shortcomings of identifying non-solid
objects and especially liquids as pointed out by Klakegg et al.
[10], the use of miniaturized NIRS scanners is challenging for
non-professionals. These challenges include light scattering,
caused by the flexibility of liquids, and lower received SNR
due to low reflectance caused by the transparency of many
liquids. It is worth noting that NIRS spectra are mostly
complex with overlapped NIR reflectance or absorbance
bands. Therefore, analyzing NIRS spectra with lower SNR
introduces additional challenges in spectra data processing.

Light Scattering

Light scattering happens when the scanned surface is
not perfectly flat. Scanning results can be affected by
light scattering in different levels, while non-professionals
lack knowledge to properly control light scattering for
successful scanning [10]. Furthermore, since liquids take
the shape of their container, and are susceptible to external
influence, light scattering may happen not only between two
subsequent scans, but also during a single scan. This may
result in a more dynamic interference compared to the scan
of solid object. As the NIRS technique relies on spectrum
analysis, light scattering can significantly affect the received
signals, with a greater impact on the final analysis results.
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Figure 3: Experimental setup.
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Figure 4: Raw NIRS data of sugar
solutions with different
concentrations.

Low Reflectance

NIRS spectra are acquired by receiving reflected lights after
interacting with the scanned object. For those objects with
low reflectance, the received light intensity can be very
low, returning low SNR in the final NIR spectra. As most
liquids are transparent, the majority of the light penetrates
the liquids, while only a small portion of the light reflects
back to the scanner to be detected, making liquids with
similar chemical components hard to discriminate. As a
consequence, in most cases of liquid identification, the
transmission mode is adopted for the NIRS scanner, i.e.,
placing the receiver on the opposite of the transmitter, so
that most of the light is received after interacting with the
liquid. However, this configuration limits the placement of
the NIRS scanner and, therefore, restricts the scenarios in
which a scan can be performed.

Design

To address these challenges, we designed a 3D-printed
clamp case for the NIRS scanner. As shown in Figure 2
with dimensions annotated, the clamp’s size is about that of
a Rubik’s cube (5.5 cm edge length). The tube is clamped
to a tube line, which can then be scanned through the scan
window in front of the tube. The scan window is covered by
the clamp, blocking most of the ambient light from interfering
with the NIRS scanner. The NIRS scanner is placed in the
case right below the clamp, and controlled by an Android
smartphone connected via Bluetooth.

It is worth noting that when inserted in the clamp case, the
NIRS scanner works in reflectance rather than transmission
mode for scanning liquids [12]. For increasing the SNR of the
detected NIR signals, it is important that the clamp is printed
with a white or high-reflectance material (we used white
polylactic acid or PLA), since the surface on the opposite
side of a scan window could act as a reflective surface. The

reflective surface can reflect the NIR light beam emitted by
the scanner, after passing through the tube and the liquid,
which interacts again with the tube and the liquid before
returning to the scan window for detection. Consequently,
by lengthening the light path, the absorbance in specific
wavelengths is increased. As the reflectance/absorbance
spectrum acts as chemical fingerprint, the SNR in the final
analyzed spectrum is also increased.

Evaluation

We experimentally evaluate our prototype by using our
system to analyze sugar (common sucrose) levels in
sugar-water solutions. We used five solutions with different
levels of sugar concentration. The amount of water added
as solvent remained constant (around 70 ml). We kept one
solution as pure water for reference, while the other four
solutions were mixed with one to four teaspoons of sugar
(approximately four grams per spoon) respectively. The
solution was pumped by a blower bulb and remained in a
transparent tube attached to the blower bulb. The tube was
clamped for scanning. For the experiment, we designed and
3D-printed a shelf as shown in Figure 3.

The scan was performed by the NIRS scanner connected
to an Android smartphone via Bluetooth. Hadamard scan
was adopted for higher SNR [12], with 228 evenly distributed
measurement points in the 900 nm ~ 1700 nm wavelength
span. Temperature and humidity were kept stable at room
temperature, respectively ~27 degrees Celsius and 20%.
Each scan was taken only once with approximately two
seconds of overall scanning time. In total, 25 scans were
performed (5 scans per solution x 5 solutions).

Results
Figure 4 shows the raw NIRS data for sugar solutions
collected in the experiment. The overall reflectance is
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Figure 5: Wavelength evaluation
by single linear OLS modeling.
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Figure 6: Single linear regression
using OLS model.

low (< 0.1), with most parts of the spectra overlapping
with other measurements. A peak region is notable from
around 1050 nm to 1100 nm, where the differences of the
reflectance are the most pronounced. The zoomed-in part
of Figure 4 shows a clear monotone decrease as the sugar
concentration of the sugar solution increases.

To further explore the most explanatory wavelengths for
measuring sugar concentrations, we ran single linear
ordinary least square (OLS) modeling to evaluate the
significance of each wavelength. The objective was to
predict sugar concentration (number of spoons of sugar)
using the reflectance measurement data in a single
wavelength. Thus, reflectance at each wavelength was
considered as an independent variable in a single linear
regression model. Figure 5 shows the statistical values for all
the models. We observed that most of the wavelengths were
statistically significant in the corresponding linear regression
models (p < 0.05). We chose 1086 nm as the most
explanatory wavelength since its model had both the largest
R? value (R? = 0.98) and F-value (F = 970.86). The fitting
curve (y = —1317.16x + 98.33) is shown in Figure 6.

Discussion and Conclusion

We observed that the significant spectrum wavelengths can
be separated in four spans: 900 nm ~ 953 nm, 965nm ~
1135 nm, 1158 nm ~ 1290 nm, and 1340 nm ~ 1664 nm.
The four spans are due to the multiple overtune regions
that originate when a single chemical compound interacts
with the NIR lights. According to the NIRS theory, when a
photon is absorbed by a molecule, it may transfer electrons
from a low-energy to a high-energy molecule orbitals with
different energy levels. The photon can only be absorbed if
it contains the same energy as the gap between pre- and
post-absorption. Since the photon energy is determined by
its wavelength, and there are several energy gaps, multiple

overtune regions are spread over the spectrum. We can
further group the first two spans, the third span and the
forth span as the third overtune region, the second overtune
region and the first overtune region respectively, as shown in
Figure 4.

This overtune phenomenon poses new challenges in liquid
identification. Considering a solution with various solutes
(chemical components), the characteristic wavelengths of
these components may overlap at different overtune regions.
Distinguishing liquids with similar chemical components
will be challenging, given the fact that miniaturized NIRS
scanners generally have lower resolution. In future work,
we will explore ancillary methods to increase SNR including
iterating the clamp modeling, signal pre-processing, etc.

In conclusion, we demonstrated the feasibility of our
system to successfully identify five different concentrations of
sugar-water solutions, which essentially adds new possible
use cases of miniaturized NIRS scanner, such as identifying
liquids in our everyday life. While previous work mainly
focused on qualitative analysis (i.e., classification) [9], our
system works for quantitative analysis as well. In our
future work, we will address the challenges of turning the
miniaturized NIRS scanner into a ubiquitous tool that could
be used anywhere at any anytime, such as identifying
liquids in hospitals (IV or syringe medicines), components of
soft-drinks (check for allergy risks), or alcohol level detection.
Potentially, this new tool could greatly benefit Ubicomp
scientists, hobbyists, and those who require meaningful
information about objects in their daily environment.
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