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Abstract

Situationally-Induced Impairments and Disabilities (SIIDs), also
known as situational impairments, have been shown to nega-
tively affect mobile interaction. This is a consequence of the
fact that smartphones have become an indispensable part of
our everyday life, and are used under various situations, con-
texts, and environments. While some situational impairments
have received more attention from the research community (e.g.,
walking-, encumbrance-based SIIDs), some remain underex-
plored. In addition, research conducted on SIIDs has typically
followed an ad-hoc approach, with studies aimed at investigat-
ing the impact of a particular SIID on a particular task.

Conversely, this thesis systematically quantifies the effects of
a range of SIIDs: ambient noise, stress, and dim ambient light on
mobile interaction. These findings then enable us to draw base-
line comparisons between the effects of these SIIDs on mobile
interaction. Furthermore, in a case study this thesis focuses on
cold-induced SIIDs, and proposes a sensing mechanism to detect
and respond to the onset of such effects.

Our contribution to Human-Computer Interaction (HCI) and
UbiComp research is to enhance our understanding of the impact
of SIIDs on mobile interaction. This knowledge is crucial to
enable the development of smarter ubiquitous technology that
can detect SIIDs and adapt mobile device interfaces accordingly
with the purpose of improving the user experience for people of
all abilities.
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Chapter 1

Introduction

1.1 Motivation

The general term of Situationally-Induced Impairments and Disabilities (SIIDs), also
known as situational impairments, refers to the relationship between the user, the
surrounding situation\context\environment, the task the user is engaged in, and
the technology used to complete this task [242, 243]. Wobbrock clarifies the differ-
ences between Situation, Context, and Environment by specifying that the situation
refers to the “immediate circumstance” of the user; while context encompasses
the broader narrative that includes the user’s engaged activities, purposes, goals,
and motivations behind these activities [270]. Finally, environment withholds a
larger setting, including both the physical and social dimensions [270]. Based
on these clarifications, Wobbrock states that the notion of SIIDs comes from the
“conviction of situational impairments” – functional limitations experienced by a user
in a specific circumstance, and from the concept of “situational disabilities” – task
or activity limitations experienced by a user in a specific circumstance [270].

In this thesis the terms SIIDs and situational impairments are used interchange-
ably, and are considered in the context of mobile interaction on a smartphone. The
ubiquitous nature of mobile devices brings new challenges to research on SIIDs
as people use them under different situations, contexts, and environments. For
example, it is common for modern smartphone users to interact with their devices
on-the-go, under the bright sunlight or a dim environment, outside in a noisy
street in winter, and even perhaps while carrying luggage or a handbag in one
hand. However, this flexibility comes at a cost to users’ cognitive, perceptual,
motor, and social abilities [270].

1



2 Introduction

The experience of situational impairments during mobile interaction applies
to users of all abilities [270]. In other words, both able-bodied and permanently-
impaired user groups are negatively affected by SIIDs during mobile interaction.
Further, several researchers mention that SIIDs might have temporary detrimen-
tal effects on user abilities during mobile interaction similar to the effects of
permanent health-related impairments [179, 274]. For example, Yesilada et al.
demonstrated in their work that a situationally-impaired user without physical
impairments performed a similar number of errors on a mobile device as a user
with physical impairments [279].

Furthermore, several studies report that situational impairments aggravate
the negative mobile interaction experience for permanently-impaired users [1,
112]. For example, visually-impaired users found it challenging to use their
smartphones while walking, carrying bags, being in a moving vehicle, being
exposed to bright/dim lights or inhospitable weather conditions, navigating
in an unfamiliar environment, or while multitasking [1, 112]. Motor-impaired
smartphone users also found it challenging to interact with their device while
being situationally-impaired [175]. To be precise, motor-impaired users identified
challenges to interact with their devices while “on-the-go”, due to restrictive
clothing, and inhospitable weather conditions [175]. Hence, finding solutions
to accommodate SIIDs during mobile interaction will benefit both able-bodied
users and users with permanent impairments.

In order to investigate SIIDs, research on the topic has been conducted in four
main areas: Understanding, Sensing, Modelling, and Adapting [256].

• Understanding focuses on investigating and establishing the effects of SIIDs
on mobile interaction.

• Sensing concerns itself with designing and building mechanisms that detect
SIIDs.

• Modelling is directed to model the user, user behaviour, and/or the envi-
ronment that might occur during SIIDs.

• Adapting aims at creating adaptive interfaces to mitigate the effects of SIIDs.

We consider Understanding to be the quintessential step that empowers conduct-
ing successful research in SIIDs. It is crucial to first understand the exact effects
that contextual factors have on mobile interaction. This knowledge can provide
the necessary evidence demonstrating if there is a need to build sensing mecha-
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nisms, and how to apply modelling and adapting techniques to accommodate
these situational impairments, without wasting unnecessary resources. Not only
is it important to establish the effects of various SIIDs on mobile interaction, but
it is also crucial to be able to compare these effects between each other [235].
By doing so, we can contribute to accumulating knowledge within a specific
research topic – an important challenge for HCI and UbiComp research [140,141].
As a result, this research is able to provide further prospects for designers and
researchers to prioritise the accommodation of different SIIDs based on the user’s
current task. A fair amount of research has been conducted to study and un-
derstand the impact of SIIDs on mobile interaction; however, the majority of
the studies follow an ad-hoc approach and lack systematic investigation. This
results in the inability of the research to draw a comparative judgement of the
magnitude of the effects of different SIIDs on mobile interaction.

Furthermore, despite the established adverse effects of certain SIIDs (e.g., cold
ambience [231]), researchers have not proposed an adequate sensing mechanism
to detect these SIIDs. The absence of such a sensing mechanism that detects
the presence of SIIDs, results in the inability to further adapt the interface to
accommodate these effects.

1.2 Contribution

1.2.1 Research Questions

Based on the research gaps identified above, we have identified three research
questions addressed in this thesis:

• RQ1. What are the effects of different SIIDs on mobile interaction?

• RQ2. How do these effects compare to each other?

• RQ3. How can mobile devices sense the onset of cold-induced SIIDs?

The contributions of this thesis are three-fold and were explored via four dif-
ferent user studies presented in this thesis. First, we contribute to and consolidate
the knowledge in understanding the effects of underexplored SIIDs on mobile
interaction, namely ambient noise, stress, and dim ambient light, by conducting
a systematic investigation. These SIIDs are commonly present in users’ everyday
settings and have recently been established as important SIIDs that lack investiga-
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tion [235]. Understanding the effects of underexplored SIIDs enables creation of
sensing, modelling, and adapting mechanisms to accommodate particular SIIDs
avoiding misallocation of resources (e.g., human, financial, technological).

Second, we provide a baseline comparison of these effects by employing a
systematic methodology discussed in detail in Chapter 3. Namely, the study
protocol presented in this thesis re-used the same observational, scoring, and cal-
culation rules to measure user performance in three common mobile interaction
tasks: target acquisition, visual search, and text entry that were re-used across
multiple user studies (Chapters 4, 5, 6). This methodology could be used by other
researchers to investigate the effects of underexplored SIIDs that were not studied
within the scope of this thesis. Finally, we propose a sensing mechanism to detect
the onset of one type of SIIDs – cold-induced SIIDs – using smartphone’s built-in
battery sensor, and demonstrate how off-the-shelf smartphone can be used to
achieve this goal.

1.2.2 Author’s Role and Contribution

Four publications are included as main contributions in this thesis presented in
Chapters 4, 5, 6, and 8. These articles are published in prestigious, international
and peer-reviewed conferences/journals in the field of Ubiquitous Computing
and Human-Computer Interaction [233, 234, 236, 237].

I would like to clarify my contribution in the presented work. I was the
lead author for the above-mentioned publications and performed the major-
ity of the work (more than 50%). Precisely, I introduced the ideas behind the
work, initiated the process, prepared the experimental designs, and handled the
ethical bureaucracy, software development, participant recruitment, and data
analysis. Moreover, I prepared the articles for submission and managed the
revision process after receiving peer-review feedback. My co-authors provided
me with feedback and suggestions on the design of the studies and data analysis
techniques. Furthermore, my co-authors contributed to the write-up of the publi-
cations. To reflect this contribution and show appreciation to my co-authors, the
scientific term “we” is used throughout the main chapters of this thesis.
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1.3 Thesis Outline

This thesis is organised as follows. Chapter 2 provides an overview of related
work conducted in this research area.

Chapter 3 outlines the methodology followed throughout the studies pre-
sented in this thesis. This chapter provides the motivation behind the method-
ological decisions used for data collection and data analysis as well as highlights
the limitations of the employed methodological approach.

Chapters 4, 5, 6 present original articles focused on quantifying the effects of
ambient noise-, stress-, and ambient light-induces SIIDs on common smartphone
tasks performed during mobile interaction: target acquisition, visual search, and
text entry.

Chapter 7 contrasts the effects of the SIIDs presented in Chapters 4, 5, and 6
on mobile interaction. This chapter draws conclusions based on this comparison
and discusses the applicability and importance of this knowledge.

Chapter 8 presents a sensing mechanism to detect cold-induced SIIDs. This
chapter suggests using smartphone battery temperature as a gauge to infer
user’s finger temperature when user is exposed to cold environments. Hence,
smartphone’s built-in battery temperature can be used to detect cold-induced
SIIDs.

Chapter 9 discusses the contributions presented in this thesis in relation to
existing research. It also outlines the limitations of the work presented in this
thesis and summarises future research directions on SIIDs with suggestions.
Chapter 10 provides final remarks and concludes this thesis.
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Chapter 2

Background

This chapter provides a review of background work of research conducted in the
area of Accessibility and SIIDs with a focus on mobile devices.

2.1 Accessibility of Mobile Devices

Mobile devices play an important role in people’s everyday life [112]. Smart-
phones and other personal devices are prevalently used for communication
purposes, to access information on-the-go, to perform work-related activities,
and to stay in touch with family and friends via social media [135–137, 199, 247].
Mobile devices have expanded the capabilities of users, in particular by providing
them with increased independence and freedom in their daily lives [54].

Despite the fact that mobile devices have also been used to assist people
with special needs [54, 112, 152], off-the-shelf smartphones might often not be
accessible to people with permanent impairments (e.g., motor and visual impair-
ments in particular) due to several design constraints (e.g., including inability to
access the content of the screen, small buttons, limited user input methods among
others) [112]. Although these accessibility problems have been established and
acknowledged [152, 266], off-the-shelf smartphones are still being primarily de-
signed for able-bodied users without sufficient consideration of the wide breadth
of accessibility issues [112].

Kane and colleagues suggest that extending the accessibility features of smart-
phones should be highly prioritised [112, 172, 245], particularly because people
with disabilities use mass-market devices to avoid the social stigma [200, 244] as
well as because there will always be a need for assistive technology as individuals

7
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with severe disabilities will require assistance either from the technology or a
human [172]. Shinohara et al. argue that we, as a society, might be able to allevi-
ate social misperceptions of disability by making mainstream technology more
accessible [244]. Moreover, Wobbrock argues that the experience of disability in
mobile interaction applies to us all to some extent [270], because our abilities are
not static and change according to the context [179]. This also includes but is not
limited to the effects of SIIDs on both able-bodied and permanently-impaired
users. Therefore, the systems should be created to fit the abilities of the users and
should follow adaptable and universal design strategies [75, 274].

Adaptable design implies including modifications to a standard design with
the purpose of making the design usable according to individual’s needs. Univer-
sal design sometimes employs adaptable strategies, meaning that the universal
design can be adaptable, but should always be accessible [172]. The goal of
accessible computing is to improve independence, access, and quality of life
for people with disabilities [274]. However, this goal can be expanded to also
improve user experience for able-bodied people who are temporarily impaired
due to SIIDs [270].

In this section we focus on visual, motor, hearing, and cognitive impairments
as they are commonly present among general population and have been exten-
sively investigated in the context of mobile interaction. Furthermore, these four
permanent impairments can be mapped to commonly acknowledged situational
impairments in terms of their effects on mobile interaction. For example, the
effects of permanent visual impairments can be similar to the effects of bright
or dim light on mobile interaction, while the effects of cognitive impairments
on mobile interaction can to some extent resemble the effects of stress. Similarly,
the effects of motor impairments on mobile interaction might be similar to the
effects of cold-induced SIIDs, as well as the effects of hearing impairments can
be similar to the effects of ambient noise in mobile interaction [268]. Therefore,
solutions suggested for accommodating the effects of permanent impairments
can be used to address the effects of SIIDs to benefit the users of all abilities.
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2.1.1 Visual Impairments

Visual impairments are widely prevalent around the world with a total number
of 2.2 billion people suffering from this condition [195]. In the United States alone
the number of visually impaired people exceeds 8 million [4]. As smartphones
are everyday ubiquitous devices, they are widely used among visually impaired
or blind users [188,266]. Nevertheless, the accessibility of conventional mobile
devices for visually-impaired users is restricted [86, 112]. For example, Li et al.
found that visually-impaired users often need to have access to the information
(e.g., calendar and contact information) during phone calls and find it problematic
as mobile phones have limited accessibility to accommodate this need [133].

In order to increase the accessibility of current mobile devices for visually-
impaired users, literature suggests several methods that include the creation of
novel interaction techniques and integration of novel technology to the existing
devices [86, 112]. Nonetheless, Brady et al. in their study demonstrate that even
though visually-impaired participants were, in most cases, willing to experiment
with novel technology, they tend to quit and stop using the technology if their
user experience was poor [27]. This example demonstrates that the usability
plays a key role in adoption of the assistive technology [27].

Furthermore, Abdolrahmani and colleagues note that the experience of visually-
impaired mobile users might be worsened by SIIDs due to cognitive load, as
their attention will need to be divided in performing parallel tasks: between
swiping the cane and interacting with the mobile device [1]. Leonard et al. argue
that mobile phones can improve user experience of visually-impaired users in
way-finding, memory recall and communication, but only if the effects of context
and visual ability are adequately accounted for [131]. Therefore, it is important to
account for situationally-induced impairments and disabilities when designing
technology to assist visually impaired users [270].

Visually-impaired users encounter several challenges when using their mobile
devices, including but not limited to accessing the content of the screen, inputting
information on the devices (e.g., text), protecting their input, and navigation [112].
To solve the aforementioned issues, researchers have suggested using voice [94,
194] and gesture [40, 111] modalities to interact with the device. Furthermore, a
fair amount of research suggested several text entry techniques to improve the
user experience in a text entry task [15, 25].
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Moreover, researchers also considered solving the problem of privacy pro-
tection for visually-impaired users during mobile interaction [4, 14]. Finally, re-
searchers also provided solutions on mobile devices for navigation and wayfind-
ing problems to support visually-impaired users [12, 228]. The following sections
summarise the existing literature in terms of voice-based interaction, gesture-
based interaction, and existing text entry, privacy and security, and navigation
solutions to support visually-impaired mobile device users.

Voice Interaction

One of the primary issues encountered by visually-impaired mobile device users
is accessing the content of their screen [112]. Currently, the most common way
for visually-impaired users to read the content of their screens is by using mobile
screen reader. The use of these devices has undergone a significant growth in
the past few years [63] even though voice interfaces were proposed as a solution
to this issue back in the late 80s [94]. For example, Hill and Grieb developed
“Touch ’n Talk” interface to assist visually-impaired users to perform computer-
based tasks [94]. The authors show that “Touch ’n Talk” was well accepted by
visually-impaired users and improved their performance in editing tasks and
accessing menus as compared to key-based talking terminals [94]. Furthermore,
O’Neill et al. developed a system with gestural input and voice output [194]. The
researchers demonstrate that interacting with the computers without GUIs is
possible and quicker than interacting with visual interfaces.

Pirhonen and colleagues took this approach one step further and implemented
it on mobile devices [214] as an interface for a mobile music player – “Touch-
Player”. The authors show that the usability performance of their participants
significantly improved when using gesture and audio based interfaces when
compared to a visual interface [214]. Similarly, Zhao et al. proposed “Earpod” – a
system for mobile devices enabling eyes-free menu selection using touch input
with a synchronously linked audio feedback [282]. Their results also demonstrate
the feasibility of the system for non-visual interaction with mobile devices. The
system was comparable to an iPod-like visual menu in selection accuracy; how-
ever, was slower in terms of efficiency. Nevertheless, the authors argue that this
issue is solved by providing the users with extensive training [282].
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In addition, text-to-speech is considered to be a popular interaction method
for visually-impaired users to interact with their devices [110, 176]. For example,
Sánchez and Aguayo presented a mobile messenger for the blind users [227]. The
authors used a custom-built keyboard for input and integrated text-to-speech
functionality for output in the messenger. Their results show that visually-
impaired participants were satisfied with system and easily adapted to the input
and output modalities of the messenger [227]. However, using text-to-speech
functionality for these purposes has several potential issues that currently remain
unresolved. For example, the users themselves do not feel comfortable to use
voice interaction with the device to avoid attracting attention, and other social
and safety reasons [245]. In addition, the presence of ambient noise causes
difficulties to use a talking device for visually impaired participants [112].

Gestures

Another issue that has been acknowledged for visually-impaired or blind users
is the usage of touch screen to interact with the device, as touch screens might
constrain the device’s accessibility [111]. The limitations of smartphones include
but are not limited to restricted input, small screen size, and non-intuitive inter-
faces [247]. As a result, early work in this area suggested to provide feedback for
touch screen interaction [40]. In particular, it was suggested that the accessibility
of touch screens can be enhanced by providing haptic feedback [259] or by creat-
ing new non-visual interaction techniques [111] including eyes-free interaction
and gestures [214]. Moreover, Pirhonen et al. suggest that the gestures should be
reliable to be performed on-the-go to avoid interaction by mistake [214].

For instance, Kane and colleagues developed “Slide Rule” – a non-visual
interaction technique to provide access for blind and visually-impaired users to
a custom-developed phone book, email client, and media player [111]. “Slide
Rule” utilises gesture interaction to achieve goals. Their results demonstrate
that visually-impaired users completed the tasks significantly faster when using
“Slide Rule” compared to when using button-based mobile screen reader. Further-
more, Azenkot and colleagues introduced “DigiTaps” – an eyes-free interaction
technique with minimal audio feedback that enables visually-impaired users
to interact with their mobile devices with little to no auditory attention [11].
This technique enabled blind participants to use gestures to input numbers on a
smartphone at a relatively high entry rate and accuracy [11].
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In addition, Ruamviboonsuk and colleagues presented “Tapulator” – a non-
visual calculator to support visually-impaired users [223]. The system uses
gestures instead of buttons and was universally designed to support any user
who requires non-visual interaction with a calculator. In their preliminary eval-
uation, the authors show that the error rate was lower when using “Tapulator”
as compared to a standard calculator application. Hence, the authors demon-
strate that “Tapulator” can benefit blind and low-vision users in terms of speed
and accuracy when compared to a traditional calculator application installed on
smartphones [223].

Previous work has also suggested using devices’ built-in sensors and user’s
spatial information to enhance the accessibility of mobile devices [132]. For ex-
ample, Li et al. introduced “Virtual Shelves” – an interaction technique used to
improve the user experience of visually-impaired users during mobile interac-
tion [132]. The technique uses proprioception, the sense of position and orientation
of one’s body parts with respect to each other, and spatial memory for interac-
tion [132]. The authors utilised the 3-axis accelerometer and the 3-axis gyroscope
of a smartphone to determine the orientation and movement of the device for
completing selection tasks and found that participants were correct in 81.8% of
these tasks. Furthermore, the authors introduced shortcuts for the participants to
be used for calling contacts, location-based tasks, email and weather checking
tasks. They demonstrate that 88.3% of shortcuts were launched correctly. This
work demonstrates how proprioception can be used to improve accessibility of
mobile devices for the visually-impaired [132].

Furthermore, Ye et al. suggested using wearables to extend mobile interaction
for visually-impaired users [278]. In their study the authors found that visually-
impaired participants positively accepted the use of a wristband and a ring sensor
to enable eyes-free interaction. The authors also suggest utilising a greater variety
of tactile feedback to extend the interaction technique [278].

Similarly, Amar and colleagues implemented “ADVICE” – a handheld de-
vice that utilises a combination of tactile and audio feedback to assist visually-
impaired users [6]. Their results demonstrate that the visually-impaired partici-
pants desire to use devices with the same functionality as their sighted peers [6].
Therefore, it is important to provide accessibility of commonly used mobile de-
vice’s features. One such example could be photography, especially as earlier
work has revealed that visually-impaired users found assistive photography
for blind appealing and useful [260]. Therefore, several researchers developed
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assistive applications to support non-visual photography [3, 88, 103, 260]. Adams
and colleagues investigated the requirements for building an application to assist
blind photography and found that visually-impaired users had difficulties to
operate with traditional smartphone camera applications [3]. As a result, the
authors implemented a set of gestures that acted as shortcuts to operate with
the picture taking application to reduce the complexity of operation. Moreover,
visually-impaired users complained that it was challenging to identify context of
the images (e.g., time, place, date); hence the application had to save the metadata
when the picture was captured together with the ambient audio and voice memo
that can be recorded by the user [3].

In addition, Jayant and colleagues introduced “EasySnaps” – a photography
application assisting visually impaired that provides an audio feedback [103]. The
authors show that audio feedback improved the quality of photographs. These
studies helped to identify requirements for creating photo-taking applications for
visually impaired users and opens opportunities for design guidelines to support
such applications for visually-impaired users.

Text Entry

Text entry is another challenging task for visually-impaired users to perform
on a mobile device [41, 112]. Therefore, a significant amount of research has
been conducted to improve text entry for visually impaired users [13, 15, 25].
For example, Bonner and colleagues present “No-Look Notes” – an eyes-free
text entry system with a gesture-based multitouch input and a voice output [25].
The system arranges the characters on an 8-segment pie menu on the screen,
and when the user touches each segment, the system announces the characters
audibly in that segment. The user can select a desired character by dropping their
second finger on the screen. The results of the system evaluation demonstrate
that the user error rate was significantly lower when using “No-Look Notes” as
compared to the VoiceOver technique; however, the text entry rate was lower
when using “No-Look Notes” when compared to the VoiceOver technique [25].

Furthermore, Azenkot and colleagues present “Perkinput” – touchscreen
text entry technique that uses multipoint touches, where each finger touch is
represented as a bit [15]. The evaluation of this technique showed that blind
users were faster and more accurate when using “Perkinput” for text entry as
compared to Apple’s voiceover [15].
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In another approach, several research projects were based on integrating
Braille technique for text entry to support blind participants due to their famil-
iarity with the technique [80]. For example, Frey et al. present “BrailleTouch” –
eyes-free text entry application for mobile devices to assist visually-impaired
users [64]. The application has 6 buttons in total and allows multitouch input
using both hands. Each alphabet letter is mapped to a combination of soft buttons
pressed according to the Braille alphabet. The evaluation of the system showed
that BrailleTouch had a potential to be used as an input technique for touchscreen
devices [64]. Mascetti et al. also used the Braille alphabet for touch input on
touchscreen devices [156]. However, unlike Frey et al. [64], the authors utilised
gestures instead of pressing the buttons on the screen.

Futhermore, Oliveira et al. also used the Braille alphabet as a base for their
system – “BrailleType” – to support text entry for visually-impaired smartphone
users [193]. Unlike the work presented previously [25, 64], “BrailleType” does
not support multitouch gestures and favours single touch gestures. The authors
evaluated performance of “BrailleType” in comparison with Apple’s VoiceOver
system and demonstrated that although participants were slower using the
system, they were significantly less error prone. Their findings suggest that
“BrailleType” had a smoother adaptation than other complex methods [193].

In addition, Oliveira et al. in their follow-up study evaluated four different
types of non-visual text entry methods – “QWERTY”, “NavTouch”, “MultiTap”,
and “BrailleType” – with blind participants [192]. The “QWERTY” method con-
sisted of the traditional computer keyboard in tandem with a screen reading
software. The “NavTouch” method was based on gestures navigating alphabet
horizontally and allowing users to perform gestures on any part of the screen.
The “MultiTap” keyboard was based on the keypad-based device. Finally, “Brail-
leType” was based on the Braille alphabet with audio feedback. The results
of their study show that the efficiency of each method depends on the user’s
individual abilities. In particular, the authors reveal that users’ spatial abilities,
pressure sensitivity, and verbal IQ levels determine users’ performance and can
be used to determine the most suitable method for each particular user [192].
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Privacy and Security

Another challenge that visually-impaired users face while interacting with their
smartphones is privacy and security [4]. While sighted people are able to mon-
itor the surrounding context and able to protect their vulnerable information
during mobile interaction in public, visually-impaired users do not have such a
privilege [4]. Azenkot et al. report in their work that visually-impaired mobile
users were not even remotely aware of security and privacy threats during their
interaction with smartphones [14].

To tackle this issue, Li et al. built “BlindSight” – an application for visually-
impaired users to perform phone calls [133]. Unlike traditional visual in-call
interface, “BlindSight” allows interaction with the keyboard and responds to
auditory feedback. The authors report general preference of the visually impaired
users for the application over traditional smartphone interface [133].

Navigation and Wayfinding

Navigation and way-finding are acknowledged as major issues that visually-
impaired users experience [112]. For example, Kane et al. demonstrated that
blind participants would use their smartphones while walking only if they are
in a familiar area [112]. As a result, great deal of research projects have focused
on improving navigation and way-finding experience of visually-impaired users
with the help of a smartphone.

Hence, to assist visually-impaired users in wayfinding, Azenkot et al. present
smartphone feedback methods “Wand”, “ScreenEdge”, and “Pattern” [12]. The
authors used haptic feedback to give routing instructions to blind users on a
predefined path. The “Wand” technique implied using the smartphone as a
wand, and when the top of the phone pointed in the correct direction, the phone
would vibrate. The device’s built-in compass was used to determine the top of
the device. The “ScreenEdge” entailed touching the edges of the device, and
when the user touched the correct edge, the device would vibrate. The “Pattern”
technique used the pattern of vibration pulses to indicate the correct direction.
The evaluation of these techniques showed that the three methods were viable to
give wayfinding instructions without demanding user’s auditory attention and
opens opportunities for creating new interaction techniques to support visually-
impaired users [12].
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Finally, Narasimhan and colleagues presented a system to enhance inde-
pendence of blind smartphone users while travelling, but used text-to-speech
modality to provide information to the users [176]. In addition, Sánches and
Maureira have developed a system for mobile devices to navigate in the subway
[228]. The program allowed users to plan the trip beforehand and the partici-
pants found it useful. Furthermore, the researchers demonstrated that the system
provided the participants with an increased independence of movement in the
subway network [228].

2.1.2 Motor Impairments

Musculoskeletal disorders of upper limbs are a common ailment that is the lead-
ing cause of disability [169]. The disorder includes but is not limited to such
diseases as essential tremor and arthritis. The disorder is prevalent around the
world with 7 million people in the US suffering from essential tremors [142],
whereas, for example, in Australia every fifth person (age over 65) suffers from
this condition [202]. The prevalence of arthritis has grown by 75% from 1990 to
2013 [30], and currently 15% of the Australian population suffers from arthritis
according to Australian Bureau of Statistics [191]. As the interaction with mobile
devices is prevalently designed to use hands, people who are diagnosed with
musculoskeletal disorders of upper limbs and other motor impairments, expe-
rience difficulties when using their smartphones. For example, prior research
has shown that upper limbs disorders are associated with missed targets, longer
interaction times, lower text entry performance, which then lead to frustration
and stress [119, 215, 275].

Research on designing and building assistive technology for motor-impaired
has risen significantly in the past decades. Assistive technology started with
a focus to improve usability experience when interacting with PCs including
but not limited to input techniques [118, 119], text entry techniques [181], and
one-handed keyboards [148]. For example, Myers et al. presented a software
that allowed motor-impaired people to use handheld device as a substitute for
a keyboard and a mouse for interacting with a computer [174]. The authors
report that their system was well accepted by the motor impaired users and was
considered to be less tiring as compared to the conventional keyboard and a
mouse combination [174].
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In another example, Trewin et al. show in their work that users with Parkinson
disease require more time when completing target selection tasks on a stationary
desktop, as well as they produce more errors compared to their able-bodies
peers [257].

Nevertheless, the creation of touch devices and interfaces have benefited
motor-impaired participants significantly, as touch screens do not require their
users to have physical strength and/or dexterity that are needed to press physical
buttons [82,174]. However, the location on the screen should be taken into account
when designing technology for motor-impaired users, as they prefer selecting
targets located in the center of the screen as it is easier and less error prone [203,
206]. For example, Guerreiro and colleagues investigated how tetraplegic users
perform taps on a touch screen [83]. The authors found that the target size of
12mm was the most suitable for selection by motor-impaired users. The authors
also found that the location of the target on the screen as well as the edge of
the device had a significant effect on the performance of tetraplegic users. The
researchers advice using these details when designing assistive technology for
motor-impaired users [83].

In a follow-up study, Guerreiro et al. evaluated the most common interaction
techniques – “Tapping”, “Crossing targets”, “Exiting”, and “Directional Ges-
tures” – with motor-impaired users [82]. The findings of their study suggest
that although accuracy and precision depended on target size, overall “Tap-
ping” was found to be most effective and preferred amongst participants with
tetraplegia [82]. Moreover, Nicolau et al. extended this work by comparing the
performance of both able-bodied and motor-impaired users on the aforemen-
tioned techniques, and show that “Tapping” and “Crossing” can be performed
by both able-bodied and motor-impaired groups of users; however, the latter
would have a higher error rate [187]. Nevertheless, “Directional gestures” have
been shown to be suitable for able-bodied users, but completely inadequate for
motor-impaired users. The authors also mention that the target size and position
on the screen had an effect on performance of both user groups [187] as well as
the posture when holding the device [188].

Similarly, Froelich and colleagues proposed “Barrier Pointing” – a system
that uses a mobile device screen’s edges and corners to provide greater stability
for motor-impaired users in order to improve their accuracy [65]. The authors
evaluated their system with motor-impaired participants and found that “Barrier
Pointing” technique improved performance of motor impaired participants in
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target acquisition tasks. Furthermore, the authors suggest integrating haptic
feedback into the system to further improve the performance of motor-impaired
users in target selection tasks [65].

Text input on mobile devices are considered to be challenging for motor-
impaired users. Therefore, there was a need to create alternative text entry
techniques to enhance the accessibility of mobile devices. For example, Wobbrock
and colleagues introduced “Edgewrite” – an alternative text entry method with a
custom alphabet that uses unistrokes [275]. The authors have demonstrated the
method’s usability efficiency and effectiveness on users with motor disabilities
and able-bodied users. This work then was extended to use pressure strokes
entered via an isometric joystick [271]. The authors showed that this method
was a comparable alternative to the existing text input techniques, empower-
ing users to utilise it while eyes-free without a significant effect on text entry
performance [271].

Furthermore, Kane and colleagues presented “TrueKeys” – a system presented
as a keyboard layout that models the word frequency and error patterns to
automatically correct typing errors [113]. “TrueKeys” was developed to support
and improve performance of motor-impaired users in text entry tasks. The
authors showed that “TrueKeys” significantly reduced error rates for both motor-
impaired and non-impaired users. The authors also suggest using personalisation
algorithms to improve text entry performance as they observed consistency in
typing errors within individual participants [113].

Finally, bio-signals could be used to enhance the interaction with mobile
devices for motor impaired users. For instance, Guerreiro and Jorge suggest
using an electromyographic signals to control mobile devices in order to assist
individuals with spinal cord injuries [81].

2.1.3 Hearing Impairments

Interaction with the mobile device can be challenging for users with hearing
impairments (Deaf or Hard of Hearing – DHH) due to different factors. For
instance, Glasser and colleagues show in their work that Deaf or Hard of Hearing
users have challenges when using speech-controlled user interfaces [68] due to
the fact that automatic speech recognition systems are commonly trained on
the speech produced by hearing users [62]. The authors suggest that speech-
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controlled systems should be able to give a better feedback to DHH users to
improve the usability. For example, it would be ideal if the system asked the
user to repeat a specific word rather than a whole phrase. The researchers also
show that having a visual feedback for speech-controlled systems enhances their
accessibility features [68].

Himmelsbach et al. show in their work that hearing-impaired users prefer
touch interactions when using their mobile devices [96]. Moreover Pfeuffer et
al. suggest extending mobile interaction by adding gaze and demonstrate that
gaze complements touch and, hence, is applicable when vocal interaction is not
appropriate [207]. The authors use gaze as an extension and a replacement of
direct touch. Therefore, gaze can be used by DHH users in cases when hands-free
interaction needs to be performed [207].

Moreover, Hong and colleagues demonstrate that the accessibility of video
content (including the content played on mobile devices) can be extended by
providing “Dynamic Captioning”, an approach that enables mapping captions
to character faces and then placing the captions in a non-intrusive area around
the face [100]. The authors demonstrate that their approach was effective and
well received by the hearing-impaired participants [100]. Similarly, Avvenuti and
Vecchio extended the accessibility of mobile devices by presenting an interpreter
to convert the interaction between the user and the application from vocal to
visual [10]. In particular, their system transforms vocal dialogues into a sequence
of visual screens [10].

Morever, Massaro et al. presented an iOS application used to supplement
speechreading by displaying an animated face to the user and transforming
speech into visual cues [158]. In addition, Sun et al. presented “Lip-Interact” – a
mobile interaction technique using silent commands [253]. The authors initially
designed the technique to allow hands-free interaction similar to voice interaction;
however, unlike voice interaction “Lip-Interact” accounts for privacy and social
norms. As the technique allows lip interaction with the mobile device, its usability
could assist not only those requiring hands-free interaction but also hearing-
impaired users especially given the efficiency of the technique that the authors
demonstrate through the user study [253].

Nasser and colleagues suggest extending the interaction with mobile devices
by adding a wearable device to enhance the usability of mobile devices [177].
In particular, the authors suggest providing a thermal feedback through the
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wearable device to provide feedback to DHH users. The authors demonstrate
that the thermal haptic feedback has a potential of being well accepted among
the users, as they were successful in differentiating between different feedback
cues [177].

Finally, mobile interaction becomes even more challenging when a combina-
tion of impairments persists. For such users, Azenkot et al. developed “GoBraille”
– an Android application built on a novel framework (named “MoBraille”) that
provides information on bus arrival times as well as information on bus stop land-
marks [13]. This software allowed deaf-blind users to travel more independently
and safely [13].

2.1.4 Cognitive Impairments

Cognitive impairments usually imply having difficulties in processing informa-
tion that requires attention, thinking, and memory [89]. Cognitively-impaired
users with attention disorders find it challenging to manage parallel tasks [180].
Therefore, users with cognitive impairments might find it difficult to type mes-
sages, as the soft keyboards require an increased focus-of-attention as the users
need to look at the buttons while typing [275]. Hence, as Himmelsbach and
colleagues mention in their work, ease of use is the main factor for cognitively-
impaired participants when using their mobile device [96].

Dawe presented requirements for mobile devices to enhance their accessi-
bility for cognitively-impaired users [55]. The author’s findings include such
requirements as simplified navigation menu, or a rugged handset. The author
also demonstrates the need for remote communication using mobile devices,
e.g., through voicemails, and the need for supporting safety check-ins with a key
aspect of tracking each other [55].

Another significant problem for cognitively-impaired people is to navigate
in the environment [79]. As the risks of being lost are quite high, people with
cognitive-impairments depend on their caregivers when going out or finding
their way [79]. For this reason, assistive mobile technology has focused largely
on creating applications to support navigation for cognitively impaired users.
Chang and colleagues present a wayfinding system that provides support to
cognitively-impaired users by providing context triggered prompts [47]. The
main idea of this wayfinding system is to tag the context with the QR codes
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and provide end-user specific response. The authors show that the system was
friendly and reliable in providing wayfinding responses to the participants. The
researchers suggest that their method can be extended to be used with RFID tags
and bluetooth beacons [47].

Similarly, Poppinga and colleagues implemented “NavMem Explorer” – a
system to support users with mild cognitive impairments to navigate within
the environment [216]. The authors’ system was efficient in wayfinding tasks
and, hence, it can potentially support independence and social life of the users
with mild cognitive impairments by allowing them to go out alone [216]. In
addition, Liu and colleagues developed another system to support navigation
and wayfinding tasks of cognitively impaired individuals [138]. The system
provided different feedback modalities including images, audio, and text for
users. The authors found that the choice of a modality was purely individualistic
and depended on users’ personal preference. In addition, authors also found
that feedback should be provided to users at appropriate times to improve their
user experience [138]. Finally, Chang and Wang in their research show that when
creating wayfinding technology for cognitively-impaired users, it is beneficial to
support the technology with video modality as participants perform wayfinding
tasks better [48].

2.2 Situationally-Induced Impairments and

Disabilities

The aforementioned permanent impairments can be mapped to situational im-
pairments as the effects of both permanent and situational impairments might
somewhat be similar, albeit to a lesser extent [268]. Situational visual impairments
can be caused by bright or dim ambient light [255]; situational motor impairments
can be caused by walking or cold hands [70,268]; situational hearing impairments
can be caused by ambient noise, and situational cognitive impairments can be
caused by stress or any other type of cognitive load [268].

A decade ago, Wobbrock anticipated the similarity of the effects of perma-
nent impairments and SIIDs on mobile interaction [268] which has then been
demonstrated in research [279]; hence, it is important to account for SIIDs when
designing technology in order for it to be accessible. Prior research has shown
that users consider the cost of situational context, when addressing their needs
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using smartphones [247]. Due to the contextual restrictions, user’s information
needs are delayed to be addressed later or forgotten [247]. Furthermore, people
create challenging situational contexts by trying to multitask as their attention
is divided between the active task and the task to address their informational
need [247].

Mobile devices are as small as the palm of a hand and are used in a number
of dynamic environments [71]. These factors can lead to SIIDs (also known as
situational impairments) [242], which can pose significant challenges to effective
interaction because our current mobile devices do not have much awareness of
our environments, and thus cannot adapt to them [71]. Sohn et al. show in their
study that 40% of the time, participants used smartphone browsing to address
their information needs [247]. Moreover, 72% of their information needs were
prompted by contextual factors (e.g., location, activity, time, conversation) [247].

Furthermore, it is important to consider SIIDs when permanently-impaired
users are interacting with their mobile devices, as they aggravate the effects of
permanent impairments. For example, very bright or dim lighting can cause
accessibility issues for users with low vision [112]; mobility worsens mobile inter-
action performance for motor-impaired [175]. Therefore, creating situationally
aware mobile devices for overcoming situational impairments and disabilities
will benefit the users of all abilities [270].

This section provides and overview of research on SIIDs in terms of Under-
standing their effects on mobile interaction, Sensing SIIDs and building detection
mechanisms, Modelling SIIDs or user behaviour, and mobile interaction under SI-
IDs, and Adapting the interface to accommodate the effects of SIIDs [273]. Further,
it summarises the design guidelines suggested by various researchers in the field.

2.2.1 Understanding

Understanding SIIDs is an essential step in conducting research in the field of
SIIDs as it plays an important role to accumulate and build knowledge on the
effects of SIIDs on mobile interaction. It is also an important step as it enables
conducting future research on SIIDs in terms of building sensing, modelling
and adapting mechanisms to accommodate SIIDs and reduce their effect on
mobile interaction. As a result, this can lead to the creation of situationally aware
ubiquitous mobile devices that enhance user experience [270].
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A great deal of research was conducted on understanding the effects of vari-
ous situational impairments on mobile interaction; however, most of the work
follows an ad-hoc approach (different studies used different smartphone tasks
and measure variables without following a consistent protocol) and lacks sys-
tematic investigation. Moreover, some SIIDs received more attention than others
within our research community. For example, walking has been widely inves-
tigated, while the effects of ambient noise remained underexplored [235]. This
section summarises the literature in terms of understanding the effects of walking,
encumbrance, cold ambience, ambient light, and divided attention on mobile
interaction.

The Effects of Walking on Mobile Interaction

Kane et al. investigate the effects of walking on mobile interaction performance
when using soft buttons of varying sizes [115]. The participants of the study were
asked to scroll through the playlist to find a given song and tap on the song to
play it. The authors found a significant effect of button size and an interaction of
button size and movement on participants’ performance. Their findings show
that the button size affects the task completion time and error rate, and its effect
size depends on the movement [115].

In another example, Lin et al. investigated the effect of walking on tapping
task performance [134]. The authors found that walking in the environment with
obstacles had a negative effect on target selection accuracy, reduced the walking
speed and increased the perceived workload [134]. MacKay and colleagues
studied the effect of walking on scrolling techniques on a PDA using a stylus [149].
The authors demonstrated that the participants took significantly longer time
to complete scrolling tasks when they were walking as compared to a static
condition [149].

Schildbach and Rukzio also studied the effect of walking on selection tasks.
They have additionally extended their study on understanding the effects of
walking on reading performance as well [239]. The authors demonstrated that
participants’ error rate increased by 24% and target selection time increased by
31% when they were walking. Moreover, walking decreased their reading speed
by 19% and increased cognitive load by 16%. Similarly, Mustonen and colleagues
demonstrate that walking deteriorates visual performance in reading and visual
search tasks [173]. In addition, Bergstrom-Lehtovirta et al. studied the tradeoff
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between the walking speed and target acquisition performance [23]. The authors
found that 40-80% of the user’s preferred walking speed enabled an optimal
target acquisition performance [23].

As it is common to type on the smartphone while walking, researchers inves-
tigated the effects of walking on text input tasks. For example, Mizobuchi and
colleagues studied the effect of walking on text entry [168]. Their work focused
on understanding how this effect varied depending on different sizes of the text
entry keys. The authors found that in general walking slowed down the text
entry speed and increased the error rate; however, this speed increased with
larger sizes of the keys while the error rate declined [168]. Similarly, Nicolau
and Jorge in their work investigate the effects of walking on text input perfor-
mance [188]. The authors demonstrate that walking led to more errors during
text entry; however, this effect could be somewhat compensated by increasing
the target sizes. The authors suggest using predictive text entry methods, correc-
tion algorithms, and/or adaptive keyboards to eliminate the negative effect of
mobility on text entry. Moreover, the authors suggest that text entry methods
should be able to sense the mobility or any other hand-tremor and then adapt
the interface accordingly by increasing the target sizes in order to enhance user
performance [188].

Harvey and Pointon further studied the effects of walking on mobile search
tasks [90]. The researchers hypothesise that walking causes attention distraction
during mobile interaction and, hence, negatively affects mobile search perfor-
mance. They conducted a study with 19 participants in a controlled laboratory
settings and asked their participants to complete search tasks in three conditions:
being seated, walking on a treadmill, and walking with obstacles. The results of
their study show that the participants found it to be more difficult to complete
search tasks when walking on a treadmill and with obstacles as compared to a
seated condition [90].

The Effects of Encumbrance on Mobile Interaction

As it is common to be interacting with the mobile device while at the same time
being encumbered (e.g., carrying shopping bags), Ng and colleagues investigated
the effect of encumbrance on mobile interaction [182]. The results of their study
show that encumbrance has a significant negative effect on accuracy of target
selection tasks with participants having more errors when they were carrying a
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small and a medium bag, as well as a thin and a thick box. Furthermore, the au-
thors added the effect of mobility to the encumbrance by instructing participants
to walk according to a defined path while being encumbered to complete target
selection tasks on a smartphone. The researchers found a significant negative in-
teraction effect of encumbrance and mobility on mobile interaction performance.
Furthermore, the authors found a negative effect of encumbrance on the walking
speed with a decline of approximately 41% as compared to a static position [182].

In their follow-up work, Ng et al. extended this research by investigating
the effects of encumbrance on different three interaction postures: two-handed
mode using index finger to interact with the device, two-handed mode using
both thumbs to interact with the device, and one-handed mode using a thumb to
interact with the device [183]. The results of this study showed that accuracy in
target acquisition tasks dropped to 48.1% in a one-handed interaction mode using
index finger, while the error rate increased by 40% in one-handed interaction
mode using thumb when participants were encumbered [183].

Investigating the effects of combined situational impairments is not common
within the research community; however, Ng and colleagues studied the effects
of both encumbrance and walking on touch-based gestures: tapping, dragging,
spreading and pinching, and rotating [185]. The authors used Fitts’ law measure-
ments to quantify these effects on the above-mentioned gestures. The findings
of the study showed that encumbrance and mobility had a negative effect on
the performance of each gesture, except for rotational activity. In particular, the
participants were less accurate when performing tapping, dragging, spreading
and pinching gestures. In terms of task completion time, participants were slower
when performing tapping, dragging and rotation tasks. The authors demonstrate
that it is important to account for physically demanding contexts when designing
interaction techniques for mobile devices [185].

The Effects of Cold Ambience on Mobile Interaction

Some research work focused on understanding the contextual and environmen-
tal factors that might lead to SIIDs on mobile interaction. For example, Choi
investigate the effects of contextual changes on human behaviour during mobile
interaction [51]. The author found a significant negative effect of walking on
reading comprehension task on a mobile device as the reading time increased
when the participants were walking as compared to a sitting condition. The au-
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thor also found that under different lighting conditions reading comprehension
performance was significantly different with a longer response time under the
dark ambient light as compared to the bright ambient light condition [51].

Previous work investigated the effect of cold ambient temperature on mobile
interaction from the perspectives of fine-motor movements and vigilance [231].
The findings show that cold ambience had a negative effect on fine-motor perfor-
mance during mobile interaction on target acquisition tasks, but not vigilance.
In particular, target acquisition time becomes longer and touch accuracy drops
when participants are exposed to cold environment as compared to the warm
environment [231].

Goncalves et al. extended the previously mentioned study [231] and inves-
tigated the effect of cold ambience on mobile interaction performance in target
selection tasks [76]. The researchers show that under the cold ambience smart-
phone interaction performance deteriorates as the throughput drops and error
rate increases. Based on these findings, the researchers suggest using ambient
temperature as one of performance predictors in Fitts’ Law [59].

The Effects of Ambient Light on Mobile Interaction

Another contextual factor that has been investigated on mobile interaction perfor-
mance is ambient light. Lee and colleagues demonstrate in their study the effects
of ambient light on visual search performance during reading [129]. The authors
demonstrate that the search speed increased as the surrounding illuminance
increased. This means that dark ambient light was associated with slow search
speed, while bright ambient light improved the participants’ performance in
visual search tasks [129]. Furthermore, the authors also show that the size of char-
acters in reading task had an effect on search performance of their participants:
bigger characters were associated with higher search speed. The authors recom-
mend the minimum size for character of 3.3 mm for optimal search performance
on a mobile device [129].

Moreover, Liu et al. studied the effects of different illuminance levels on
character detection task on a mobile device [139]. The researchers report that
their participants’ performance decreased when they completed the character
detection task under bright illuminance as compared to low illuminance levels
due to glare of the device [139].
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The authors demonstrate the importance of accounting for ambient illumi-
nance on mobile interaction particularly for the cases when mobile interaction
comes at a cost (e.g., during medical operation in need of using mobile device to
control technology) [139].

The Effects of Divided Attention on Mobile Interaction

Finally, there was an attempt to study the effects of not only the external, but
also “from within” factors on mobile interaction (i.e., coming from user’s internal
states [273]). For instance, Oulasvirta and colleagues investigated the effect of
fragmented attention caused by moving through urban settings on a mobile
browsing task [196, 197]. The authors report that participants attention focused
for 6-16 seconds on the task with the intermittent breaks of 4-8 seconds. The
authors’ results show that attention resource competition is real and constrains
mobile interaction.

2.2.2 Sensing

Mobile device sensors have been widely used in the HCI and UbiComp com-
munities for various purposes. For example, a fair amount of work focused on
using device sensors to detect context (e.g., [2, 56, 240]), while other researchers
used smartphone sensors for activity recognition (e.g., [8, 252, 265]). Similarly,
smartphone sensors have been used to detect SIIDs and this section provides an
overview of existing work in terms of sensing SIIDs.

For example, Goel and colleagues used smartphone’s built-in accelerometer
to detect if a user is walking [70]. Based on this sensing, the authors then adapted
the keyboard to overcome the SIIDs caused by walking. In particular, the authors
used the displacement and the acceleration of the device for the classification
model for text entry. The authors demonstrate how successful detection of
walking then can lead to creation of adapting interfaces to mitigate the effects of
walking on a text entry [70].

Furthermore, smartphone sensors have been used to detect essential tremors [45,
67, 109, 225]. These works utilised smartphone’s accelerometer sensor to detect
hand tremors. For example, Daneault et al. used smartphones to collect and pro-
cess the accelerometer data which they then used to correlate with the laboratory
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accelerometer data [53]. The authors found that the tremors with amplitudes
lower than 1mm were not detected with the smartphone; however, for high
amplitude tremors (> 1mm) the correlation between the smartphone data and
the laboratory accelerometer data was relatively high (r > 0.88). These above
examples use accelerometer to detect both SIIDs (i.e., caused by walking) and
permanent impairments (i.e., essential tremor); hence a detection mechanism
designed to sense SIIDs can be used to also detect permanent impairments as
was envisioned by Wobbrock [268].

Azenkot and Zhai [16] found that majority of users at least “sometimes” used
their phones with either the thumb of their dominant hand (one-handed holding
posture), their dominant index finger (two-handed holding posture), or both
thumbs (two-handed holding posture). Therefore, a substantial amount of work
focused on identifying the grip and device holding posture of the users. For
instance, Goel et al. in their work present “GripSense” – a system to detect
hand-posture based on the device’s gyroscope, vibration motor, user touch size,
and swipe shape [72]. The authors demonstrate that their system was extremely
accurate when detecting if the device was on the table or held in hands with
a detection accuracy of 99.7%. However, this accuracy slightly dropped when
detecting between different hand postures (84.3%). Furthermore, the authors sug-
gest their system can be useful to detect when the user is situationally-impaired
due to encumbrance and can only operate the mobile device in one-handed
interaction mode [72].

Similarly, Gupta and colleagues also focused on identifying users’ grip strength.
The authors suggested using a concept of a virtual spring to detect the strength
of the grasp when holding the device with one hand in order to enable eyes-free
interaction [85]. In their work they presented an electro-mechanical system called
“SqueezeBlock” that can be used in various use-case scenarios, e.g., changing the
ringer volume by squeezing the device [85]. This concept can be applicable for
situations when the user is encumbered to ease the interaction with the device by
limiting to the squeezing gesture.

This feature has then later been implemented within Google smartphones.
Precisely, Google has implemented “Active Edge” feature on Pixel mobile devices
to detect the grip force of the user. Depending on this grip force, the smartphone
launches Google Assistant, thus allowing quick interaction for the user [218].
This feature can be applicable during situational impairments when the user
cannot interact with the device with both hands or requires quick activation
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of the Google Assistant with one hand (e.g., encumbrance, diverted attention).
Quinn and colleagues from Google evaluated “Active Edge” and report that
the technique was found to be easy, comfortable, and reliable as an interaction
technique to silence the alarm, take pictures, and voice commands [218].

Several researchers proposed using smartphone’s built-in sensors to protect
privacy issues; hence, address privacy-induced SIIDs [87, 143]. For example,
Haque et al. suggested using smartphone accelerometer sensors for authentication
purposes [87]. In particular, the authors recommend using accelerometer to
distinguish the user’s gait pattern and, hence, authenticate the user. The authors
claim that this approach can be extended to a conventional smartphone users to
secure authentication in vulnerable locations and situations, e.g., at a night time
when unlock pattern can be visible due to the screen light of the device [87].

Moreover, Mariakakis et al. in their recent work presented “Drunk User
Interfaces (DUI)” that are used to quantify the effects of alcohol on human motor
coordination and cognition during mobile interaction [153]. They utilised sensor
data in combination with user input data to build prediction models to detect
blood alcohol levels. The authors demonstrated that their system was highly
accurate to detect users’ blood alcohol levels with an absolute mean error of
0.005%± 0.007% and with a strong Pearson’s correlation of 0.96 with the ground-
truth measurements.

Mobile device sensors have been suggested to be used to detect surrounding
context. For example, Yi and colleagues utilised a single tri-axial accelerometer
attached to a mobile device to sense contextual information and have shown that
their system was able to successfully determine the mobile state of the user and
ambient light [280].

Similarly, Mass and Madaus discuss using smartphone pressure sensors to
detect environmental pressure [157]. The authors claim that the network of
smartphones could provide a reliable pressure data as it would not be influenced
by external factors [157]. In addition, Overeem and colleagues demonstrated
in their work that smartphone temperature data can be used to predict daily
average air temperature [198].

Finally, Reis and colleagues presented two context-aware prototypes that were
able to automatically adjust volume depending on the contextual situation based
on the detected level of ambient noise [221]. The interfaces used smartphone’s
microphone to sense the levels of surrounding noise.
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The prototypes also allowed accounting for user preferences that were col-
lected through users’ settings and modifications. The authors demonstrate that
the systems were positively accepted amongst the users, and hence show that
accounting for noise-induced SIIDs is important when designing interaction
technology [221].

We extend this literature by presenting a sensing mechanism to detect cold-
induced SIIDs on mobile interaction and present our findings in Chapter 8 of this
thesis.

2.2.3 Modelling

Modelling is an aspect of SIIDs research that focuses on modelling either envi-
ronment or user behaviour to enhance our understanding of SIIDs. Furthermore,
modelling can include creation of machine learning models that are used to
predict either the effect of SIIDs on mobile interaction or human behaviour under
SIIDs. In addition, several researchers have created models which were used for
creation of adaptive user interfaces to accommodate the effects of SIIDs. This
section summarises modelling examples in SIIDs that exist in literature and have
been implemented by the researchers.

For example, Flatla and Gutwin developed and presented individual models
for colour differentiation for users affected by permanent (colour vision defi-
ciency) or situational visual impairments (e.g., bright light) [60]. The authors
demonstrate that their model was effective in detecting user’s individualistic
colour differentiation abilities and efficiently improved colour adaptation of
mobile device’s screen [60].

There was an element of modelling in the work by Mariakakis et al. when
creating “Drunk User Interfaces” [153]. In particular, the authors developed an
application that used machine learning models to determine the blood alcohol
level of the user. The authors trained machine learning models on real human
behaviour data observed and collected from interaction performance and sensor
data [153].

Mott and Wobbrock presented “Cluster Touch” – a touch offset model to
improve touch input accuracy for motor-impaired users. This work can be
extended to support users experiencing SIIDs due to walking [171]. The general
model for “Cluster Touch” is built based on touch data from multiple users
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and can then be personalised based on individualistic touch behaviour of the
users. The authors demonstrate the efficiency of their technique, as “Cluster
Touch” improved touch accuracy of motor-impaired users by 14.65%; while
this number for situationally-impaired users reached 6.81% as compared to the
native touch baseline. Furthermore, the touch accuracy during an offline analysis
improved by 8.21% and 4.84% for permanently and situationally impaired users
respectively [171].

In addition, several works have suggested using language models to ad-
just key press probabilities [5, 78, 84]. For example, Buschek and Alt presented
“ProbUI” – probabilistic graphical user interface framework for mobile devices
that defines touch behaviours, evaluates them probabilistically, and infers touch
intentions based on the first two steps [35]. This framework could be used to
improve the gesture and touch accuracy in situations resulting in a reduced touch
accuracy due to the user being situationally-impaired (e.g., walking).

As users perform differently when interacting with their mobile devices, it is
necessary to take into account personalised characteristics of human behaviour in
mobile interaction [269]. For instance, Buschek et al. emphasise the importance of
individualistic characteristics of touch interaction [36]. The authors demonstrate
that the touches performed using thumb are more individualistic than the index
finger touches. Hence, the mobile devices should be able to differentiate between
different holding postures and adapt accordingly depending on the interaction
mode [36].

In addition, one of the examples of successful personalisation in text entry was
the system named “Text Text Revolution” (TTR) presented by Rudchenko and
colleagues [224]. In their user study, the authors trained target resizing on touch
point collected from the participants first 10 rounds of performing tasks in TTR,
and simulated personalised target resizing models in the second 10 rounds of
TTR. Their results showed an improvement in text entry as the error rate reduced
by 21.4% [224].



32 Background

2.2.4 Adapting

The adapting aspect of SIIDs research is directed to create adaptive interfaces to
accommodate the effects of different SIIDs. This section presents several adaptive
interfaces existing in the literature, that are used to mitigate the effects of walking,
encumbrance, situational visual impairments, and situational privacy issues that
arise due to the vulnerability of the environment.

Interface Adaptations to Accommodate the Effects of Walking

As walking was paid more attention than other SIIDs within the research commu-
nity, several researchers worked on creating adapting interfaces to accommodate
the effect of walking on mobile interaction. For example, to mitigate the effect
of walking on song selection task, Kane et al. created an adaptive walking user
interface for a music player that scales target sizes based on user motion [115].
The interface shrinks the buttons when the user is standing still; however, when
the user is walking, the targets and text expand in size to improve readability and
touch access [115]. Their evaluation results show that the interface adaptation
to accommodate walking significantly improved task completion time; however
the authors suggest that task difficulty and other individual characteristics of the
users should also be taken into account to create successful adaptive interfaces to
mitigate the effect of walking [115].

Another suggestion to overcome walking-induced situational impairments
was to use screen stabilisation techniques to stabilise the content of the screen [219].
For example, Rahmati et al. present “NoShake” – a system that utilised smart-
phone’s accelerometer to detect if the device was shaking and then compensate
for shaking by shifting the screen content in the opposite direction. The results
of their study show that “NoShake” improved user experience in presense of
shaking. The authors also suggest that the system could improve user experience
of people who are unable to hold the device steadily, e.g., those suffering from
Parkinson’s disease [219].

Yamabe and Takahashi also proposed a user interface adaptation approach to
accommodate for the effects of walking in mobile interaction [276]. In particular,
the authors suggest changing the size of the screen elements based on the display
movement. Furthermore, the authors suggest taking into account user’s individ-
ual characteristics when designing adaptive interfaces to diminish the effects of
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walking [276]. Brewster suggested accompanying small buttons with the sound
feedback to enhance the usability of the interface [31] that might particularly be
useful for situations when touch is inaccurate, e.g., due to walking.

A fair amount of work has focused on creating adaptive interfaces to improve
text entry methods as it is one of the common tasks users perform on their
smartphones. For instance, Goel et al. introduced “WalkType” – an adaptive
text entry system for smartphones that compensates for movement when users
are walking [70]. The system utilises devices’ accelerometer sensors to detect if
the user is walking. The authors demonstrate that “WalkType” reduces errors
by 45.2% and improved typing speed by 12.9% [70]. Similarly, Himberg and
colleagues developed an adaptive keyboard that arranges keys according to the
spatial distribution of keystrokes [95]. The results of their evaluation show that
the changes in the keyboard are consistent within each user. Hence, the authors
conclude that personalisation should be taken into account when designing
adaptive keyboards [95].

In addition, Go and Endo introduced personalisation in adaptive keyboards
by presenting “CATKey” – an adaptable keyboard for touchscreen devices with
customisable functions [69]. The keyboard was able to adapt each key’s centroid
to the centroid of recorded keystroke points. Although “CATKey” did not have
any significant advantage in terms of improved efficiency in typing during
evaluation, the participants expressed their preference towards “CATKey” as
compared to the traditional “QWERTY” keyboard [69]. This keyboard is another
example how text entry can be improved during walking.

One-Handed Interaction to Overcome Encumbrance

Buschek and colleagues in their work presented and evaluated dynamic adapta-
tions of mobile touch interfaces to overcome the inconvenience of using a large
screen in a one-handed interaction mode [37]. The authors present three tech-
niques – “Roll”, “Bend”, and “Move” – to locate GUI elements on the screen
at a comfortable reach for the user. The authors show that their techniques im-
proved users interaction due to the increased comfort of usability, decreased
fatigue, and ease of grip [37]. These techniques could be used to overcome the
effects of encumbrance during mobile interaction, as it is common to perform a
single-handed interaction with the device when encumbered [185].
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Karlson and colleagues introduced “AppLens” and “LaunchTile” – user in-
terface techniques designed to enable one-handed interaction with the mobile
device [117]. Both interfaces used the zoom technique with a difference that
“AppLens” used a tabular fisheye, while “LaunchTile” used a pure zoom to be
used with specific gestures to perform using a thumb [117]. The authors demon-
strate that the users were more efficient when using “AppLens” as compared
to “LaunchTile” in terms of task completion time and preferred using it over
“LaunchTile”.

Karlson and Bederson presented “ThumbSpace” – an interaction technique for
one-handed interaction mode using thumb [116]. The results of their evaluation
show that “ThumbSpace” was positively received by the users and improved their
performance in completing target acquisition tasks on a smartphone designed for
small size targets. Furthermore, the authors suggest this interaction technique
could also be useful for encumbered users, as it allows to free one hand and
effectively complete smartphone interaction [116].

“Twiddler” is a text-entry technique presented by Lyons and colleagues [148].
Similar to work mentioned above [37,116,117], this method could be used for text
entry when a user is being encumbered as it enables single-handed text entry and
proves to be effective and intuitive as the authors demonstrate in their work [148].
Another system that can be used in encumbered situations is “Unigesture” devel-
oped and presented by Sawazal et al. [238]. “Unigesture” – a tilt-to-write system
that enables one-handed text entry [238]. “Unigesture” uses accelerometer data
to determine the tilt of the device and acquire the input character that is mapped
to a particular tilt. The evaluation of the system demonstrated that the individual
characteristics of the user had a greater effect on their text entry performance.
Hence, the authors suggest taking into account personal characteristics of users
when designing adaptive technology for text entry [238].

In addition, Boring and colleagues created the “Fat Thumb” interaction tech-
nique that allows using thumb’s contact size with a small size for panning and a
big size for zooming [26]. After evaluating this technique, the authors demon-
strate that the “Fat Thumb” interaction technique compared quite well with the
existing mobile interaction techniques. “Fat Thumb” could be used efficiently in
situations when the user is encumbered or cannot interact with the device in a
traditional manner [26].
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Furthermore, not only being encumbered can cause difficulties when interact-
ing with a mobile device, but also small screen size [89, 279] can lead to the “Fat
finger problem” [246]. Baudisch and Chu suggest using the back of the device to
solve this problem during selection tasks on a mobile device [21]. The researchers
show that using the back of device for mobile interaction enables higher accuracy
and lower error rate in target selection tasks independent of device size [21].

Moreover, Buschek and colleagues also suggest using back of the device to
allow rapid and efficient typing as it engages all ten fingers of the users [39]. The
authors’ technique [39] can be used to solve the problem of a small screen that is
also stated to cause situational impairments to mobile device users [31, 279].

Finally, as research has shown that hand posture can either improve or deteri-
orate the performance on text entry, some work took into account the holding
posture of the device in text entry [71]. For example, “ContextType”, a system
that infers users’ hand postures to improve text entry on mobile touch screen de-
vices. “ContextType” supports typing with four hand postures: two thumbs, just
the left thumb, just the right thumb, and either index finger [71]. “ContextType”
switches between underlying touch-models based on inference about how the
user is holding the device while typing, without changing the visual layout of
the keyboard and leverages previous work by Goel et al. on “GripSense” based
on detecting holding posture for the device [72] that was mentioned earlier in
this chapter [71].

Non-visual Interaction to Accommodate Situational Visual Impairments

In some situations it is important than the mobile device allows eyes-free inter-
action, i.e., when the user cannot interact with the device due to e.g., mobility,
divided attention, or situational visual impairments. To address this requirement,
Jain and Balakrishnan developed a bezel gesture-based text entry method to al-
low eyes-free text entry on a mobile device [102]. Their system was easy to adapt
to, as the novice users transitioned to being an expert after one hour of training.
The authors also demonstrate that the bezel-based text entry was comparable in
terms of speed, accuracy, ease of learning and use with existing traditional text
entry methods [102]. This example showcases how eyes-free text entry can be
enabled using gestures.
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Similarly, Chen and colleagues presented “Swipeboard” – an eyes-free text en-
try method that uses swipe gestures for inputting text [49]. The technique utilises
two swipes: 1) to specify the region of the character location, and 2) to select the
necessary character. The authors demonstrate that with an extensive training
users perform text entry 15% faster using “Swipeboard” than the conventional
baseline text entry method [49].

In addition, several works have been shown to use device’s accelerometer
for text entry to enable eyes-free interaction [107, 204, 238, 267]. For example,
Jones et al. utilised mobile device accelerometers for text entry using mid-air
gestures [107]. The authors showed that accelerometer-based text entry gestures
had a significantly higher words per minute rate and a lower error rate. In
addition, subjective ratings of the study’s participants showed their preference
for accelerometer-based text entry technique [107]. Partridge and colleagues
also suggested using accelerometer for text entry, however unlike Jones et al.
[107], they used accelerometer together with the buttons [204]. This interface was
suggested to be used for smartwatches. The combination of the device tilt and
pressed button were mapped to a particular character [204].

Moreover, Pielot et al. present “PocketMenu” that enables non-visual interac-
tion with the mobile device by locating the menu items on the edge of the touch
screen [210]. The system provided a vibrotactile feedback and speech input to
enable non-visual interaction. When evaluating “PocketMenu” in comparison
with iPhone’s VoiceOver, the authors found that “PocketMenu” outperformed
VoiceOver as it was quicker to complete tasks with and had lower selection
error rate with higher subjective usability values. The authors propose using
“PocketMenu” in situations when the non-visual interaction is needed, such as
situational visual impairments, walking, hiking, cycling [210].

Finally, Mariakakis and colleagues implemented “SwitchBack” – a method
allowing users to resume tasks in a more efficient manner [154]. The authors
used mobile device’s front-facing camera to determine the gaze of the user and
based on this information indicated an area on the screen. The method improved
user reading speed by 7.7% when the user was distracted. This system enabled
easy return of user attention back to a mobile device in presence of distractions
of the surrounding environment [154].
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Overcoming Privacy Issues

It has been shown in literature that users can be situationally-impaired due to
privacy issues [269]; hence, it is important to account for privacy when creating
adaptive interfaces to accommodate SIIDs. As such, Lyons and colleagues suggest
using dual-purpose speech interaction to overcome privacy challenges when
using voice for interacting with mobile devices [147].

A dual-purpose speech serves two roles: 1) it is socially appropriate and
meaningful in the context of human conversation; 2) it provides input to a
computer. Hence, only the user can be aware of the commands being executed
on the device [147].

Buschek and colleagues present “SnapApp” – an unlock concept to reduce
authentication overhead by enabling time-constrained quick-access to the mobile
device [38]. The technique can be used in situations when the user needs a quick
access to the device while having difficulties to unlock it, e.g., while walking
or being encumbered. Azenkot and colleagues suggest using tapping sequence
to authenticate the user [14]. Precisely, the authors present “PassChords” – an
eyes-free touchscreen authentication method based on tap patterns. The authors
show that their technique was 3 times faster than the iPhone’s standard Passcode
Lock with VoiceOver [14]. This technique can be used to enable eyes-free unlock
in situations where the visual attention of the user is occupied with another task.

2.2.5 Additional Design Guidelines

This section presents additional design guidelines proposed but not implemented
by the respective researchers to potentially overcome different SIIDs.

For example, to diminish the effect of walking on target selection task, Schild-
bach and Rukzio suggested increasing the button size by a range of 20% and
40% [239]. Moreover, Parhi et al. conducted a study aimed at examining the effect
of different button sizes on mobile interaction [201]. The study shows that the
target selection time and accuracy improve with larger target sizes. The authors
argue that target sizes of 9.2 – 9.6 mm is an optimal tradeoff between the target
selection time and target size. Nevertheless, the authors suggest taking into
account the screen size of the device [201].
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Moreover, to decrease the effects of hearing impairments on mobile interaction,
both permanent and temporal (caused by SIIDs such as ambient noise), the
literature suggests enlarging the cursor [34], using highly visible visual feedback
(e.g., flash) to grab user attention [50], and vibrotactile haptic feedback [32]. To
reduce the effects of hands motion or tremor on mobile interaction, caused both
by permanent impairments of upper limbs and temporal SIIDs caused by e.g.,
walking, the literature suggests using alternative keyboards, audio input (e.g.,
voice commands), and eye tracking [151].

Qian et al. suggest using tactile notifications to support situationally-impaired
users in order to free their visual and auditory attention for other tasks [217].
Furthermore, Yatani and Truong showcased that haptic feedback is effective
in supporting eyes-free interaction, as users in their study could distinguish
between ten different patterns of tactile feedback with an accuracy of 90% [277].
Similarly, Bragdon et al. suggest using Bezel gestures to overcome SIIDs as in
their study the authors demonstrate that the environmental factors (e.g., mobility
and divided attention) did not have an effect on bezel gestures; hence, the users
performed faster and more accurately when interacting with a mobile device [28].

Research has shown that the location on the screen also needs to be taken
into account when designing adaptive interfaces to accommodate for different
SIIDs. For instance, Wobbrock and Gajos suggest a target selection technique
called “goal-crossing” that considers the area around the target as a selection area.
As a result it improves target selection accuracy for motor-impaired users and
motion-induced SIIDs [272]. Although the authors suggest using the technique
for desktop computers, we argue that the method could also be adapted for
mobile interaction.

Meanwhile, Kane et al. found in their study that the blind users prefer us-
ing the edges of the smartphone for the gestures to interact with their mobile
device [114]. It is also important to remember that gestures are more preferred
when interacting with mobile device as compared to other interaction meth-
ods [222]. For example, Reyal and colleagues in their study show the feasibility
of gesture-based input keyboard, as their findings demonstrate that the users
have a tendency to switch from text-based input keyboard to gesture-based input
keyboard [222].
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In addition, it is also important to account for different ways to present
information as it can benefit interaction when adapting for SIIDs. For instance,
Brewster et al. suggest using a 3D audio radial pie menu and 2D gestures to
facilitate eyes-free interaction [33]. The results of their evaluation show that users
were more accurate when provided with an audio-feedback and, hence, improve
the usability of mobile devices under eyes-free interaction mode [33].

It is also crucial to provide feedback when designing adaptive interfaces to
reduce the effects of SIIDs. Findlater et al. formulated design guidelines for touch-
screen keyboards that support touch-typing with limited tactile feedback [58].
After investigating typing patterns of 20 professional typists, the authors con-
clude that creation of effective solutions for non-visual keyboard designs requires
personalisation as the key presses were consistent within individual partici-
pant [58]. Moreover, Hoggan et al. studied the effect of tactile feedback on mobile
interaction performance and also showed that tactile feedback significantly im-
proved text entry [98]. Moreover, Hoggan et al. suggest taking into account a
surrounding environment when providing feedback to the user [99]. The authors
empirically show that audio feedback becomes ineffective at noise levels of 94dB,
while tactile feedback become ineffective at vibration levels of 9.18g/s [99]. These
findings show the importance of the mobile device being able to sense the context
to appropriately choose the feedback modality for the user.

In addition, Pielot and colleagues suggest supporting navigation systems with
a tactile feedback to free users attention for other tasks from navigating within the
environment [208,209]. Qian et al. also suggested using tactile feedback to support
users during SIIDs in order to free their visual and auditorial channels to complete
other tasks that demand their attention [217]. The authors suggest extending
their work on to wearable devices to extend the smartphone capabilities [217].

Furthermore, Harper et al. suggest using multimodal input that includes com-
bination of oral, visual, audio, and haptic feedback to increase the efficiency of mo-
bile interaction when the participants are experiencing visual impairments [89].
Similar to Harper et al. [89], Hoggan and Brewster also suggest using multimodal
and crossmodal interaction with mobile devices to substitute visual feedback
for mobile notifications [97]. The authors show that participants trained to un-
derstand audio alerts could recognise corresponding tactile alerts without any
training and vice versa. Therefore, crossmodal features added to the mobile
interface elements and hence enable non-visual information about these elements
on mobile interface [97].
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Pielot and colleagues also suggest using multimodal feedback, including
tactile and visual, to improve navigation systems on handheld devices [211]. The
authors evaluated their system with 21 participants and have shown combination
of the two modalities improved the participants’ navigation performance. The
authors also show that in the presence of the tactile feedback is used, the user
distraction levels decrease [211,212]. Furthermore, in their follow-up work, Pielot
and colleagues demonstrate that tactile feedback can be successfully adopted
to reduce the effects of SIIDs that appear when using navigation systems (e.g.,
bright sun light) and, hence, reduce the distraction levels of users [213].

Finally, Barnard et al. suggest considering personal characteristics of inter-
action behaviour, as SIIDs do not affect people in a uniform way [20]. The
authors suggest using a combination of hardware sensors, software, and design
to overcome the challenges introduced by SIIDs on mobile interaction [20].

2.2.6 Summary

Table 2.1 summarises the findings from section 2.2 in terms of understanding
SIIDs including the smartphone tasks used to quantify the effects of SIIDs on
mobile interaction, sensing mechanisms used to detect different SIIDs, existing
modelling and adapting mechanisms that have been implemented, and other
distilled design guidelines recommended by the researchers.

As can be observed from the detailed literature review and stated in [235],
the effects of some SIIDs remain underexplored. The literature review also
demonstrates that the studies conducted in the field of SIIDs followed an ad-
hoc approach, and there were no standard measures and rules to quantify the
effects of SIIDs on mobile interaction performance; hence, creating an additional
challenge of comparing these effects. We extend this literature by investigating
the effects of ambient noise, the effects of stress, and the effects of dim ambient
light on mobile interaction in Chapters 4, 5, 6 of this thesis respectively. We also
provide a sensing mechanism to detect cold-induced SIIDs in Chapter 8. Finally,
we showcase that by following a systematic approach in studying the effects of
SIIDs on mobile interaction performance, we can compare the effects of various
SIIDs to each other. It is important to note that this table is limited to the SIIDs
that have been studied within the research community and includes established
findings from the literature. However, a more extensive list of SIIDs that were
not yet investigated or acknowledged can be found in [269, 273].
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Table 2.1: Summary Table of Situationally Induced Impairments and Disabilities in Terms of Their Understanding, Sensing, Modelling, and Adapting

SIID
Understanding

Sensing
Modelling and

Adapting Interfaces

Design

GuidelinesSmartphone

Task

Effects of

SIID

Walking

Scrolling [115, 149];
Increased error rate [115];

Increased task completion time [115, 149];

Accelerometer [53, 70, 278];

"Cluster Touch" [171];

"ProbUI" [35];

Bezel gesture-based text

entry method [102];

"SwipeBoard" [49];

"WalkType" [70]; "ContextType" [71];

"Walking user interfaces" [115];

"Text Text Revolution" [224];

"CATKey" [69];

"NoShake" [219];

Adaptive text entry [95];

Accelerometer-based gestures [107, 202];

Sound feedback for buttons [31];

Change the size of the screen

elements [201, 239];

Alternative keyboards using

audio input and eye-tracking [151];

Bezel gestures [28];

Increase target selection area [272];

Tactile feedback [211, 212];

Multimodal feedback [89, 97, 211];

Target acquisition [23, 134, 239];

Increased error rate [134, 239];

Increased workload [134];

Increased target access time [239];

Reading (on the device) [51, 173, 239];

Decreased reading speed [173, 239];

Increased cognitive load [239];

Increased task completion time [51];

Visual search [90, 173];

Decreased visual search speed [173];

Increased task completion time [173];

Increased cognitive load [90];

Text entry [168, 188];
Decreased text entry speed [168];

Increased error rate [188];

Encumbrance Target acquisition [182, 184]; Increased error rate [182, 184];

Gyroscope, vibration motor,

user touch, swipe shape [72];

"Virtual spring" [85];

"Google Active Edge" [216];

Bezel gesture-based text

entry method [102];

"Text Text Revolution" [224];

Dynamic adaptive touch

interfaces [37];

Back-of-device interaction [21, 39];

"Fat Thumb" [26];

"ThumbSpace" [116];

"AppLens", "LaunchTile" [117];

"Twiddler" [148]; "Unigesture" [238];

Bezel gestures [28];

Alternative touch interfaces [37];
Encumbrance

+

Walking

Target acquisition [182, 185];

Decreased walking speed due

to encumbrance [182];

Decreased accuracy [185];

Increased target access time [185];

Dragging [185];
Decreased accuracy [185];

Increased task completion time [185];

Spreading [185];
Decreased accuracy [185];

Increased task completion time [185];

Rotating [185]; Increased task completion time [185];

Pinching [185]; Decreased accuracy [185];

Cold ambience
Target acquisition [76, 231];

Increased error rate [76, 231];

Increased target access time [76, 231];

Decreased throughput [76];

Battery sensor

[Chapter 8];
n/a

Change the size of the screen

elements [201, 231, 239];

Visual search [231]; No significant effect [231];
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Privacy n/a n/a Accelerometer [87];

Dual-purpose speech

interaction [147];

"SnapApp" [38];

"PassChords" [14];

Speech recognition [147];

Non-visual touch interfaces [14] ;

Alcohol
Text entry, Swiping, Simple and

Choice reaction tasks [153];

n/a

* The authors used these tasks for

building predictive models but not

to understand alcohol-induced SIIDs

on mobile interaction;

Accelerometer, touch-screen [153];
"DUI" to model blood

alcohol levels [153];
n/a

Fragmented

attention
Browsing task [196, 197]; Decreased attention time to the task [197]; n/a "SwitchBack" [154];

Bezel gestures [28];

Tactile feedback [208, 209, 211, 212, 217];

Bright ambient

light

Visual search [129];
Increased search speed [129];

Increased error rate [139];

Accelerometer, ambient light

sensor [278];

Colour differentiation models [60];

bezel gesture-based text

entry method [102]; "SwipeBoard" [49];

"PocketMenu" [210];

Tactile notifications [217];

Tactile feedback [58, 98, 213, 277];

Using smartphone edges [114];

3D radial pie menu [33];

2D gestures [33];

Multimodal feedback [89, 97, 211];

Character detection [139];

Ambient noise

Target acquisition [Chapter 4]

Increased target access time under

music and urban noise [Chapter 4];

Decreased accuracy under

music [Chapter 4];
Microphone [219]; n/a

Enlarge a cursor [34];

Provide highly visible

visual feedback [50];

Haptic feedback [32];

Visual search [Chapter 4]

Decreased target memorisation time

under urban indoor noise [Chapter 4];

Increased error rate under urban

outdoor noise [Chapter 4];

Text entry [Chapter 4]

Increased time per character entry

under urban outdoor noise

and meaningful speech [Chapter 4];

Stress

Target acquisition [Chapter 5]
Increased target access time [Chapter 5];

Decreased accuracy [Chapter 5];
n/a n/a n/a

Visual search [Chapter 5] Decreased target memorisation time [Chapter 5];

Text entry [Chapter 5] No effect
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Dim ambient

light

Target acquisition [Chapter 6]
Increased target access time [Chapter 6];

Decreased accuracy [Chapter 6]; Accelerometer, ambient light

sensor [278];
n/a

Tactile notifications [217];

Tactile feedback [58, 98, 213, 277];

Using smartphone edges [114];

3D radial pie menu [33];

2D gestures [33];

Multimodal feedback [89, 97, 211];

Visual search [Chapter 6] Increased target memorisation time [Chapter 6];

Text entry [Chapter 6] No effect



44



Chapter 3

Methodology

This chapter outlines the methodological approach that was followed in the
research presented in this thesis. In particular, it provides the motivation behind
particular decisions that were employed in the methodology of the experiments
presented in Chapters 4, 5, 6, and 8. The purpose of the studies conducted and
presented in Chapters 4, 5, and 6 was to provide an understanding of the effects of
different situational impairments on mobile interaction; whereas, the purpose of
the study presented in Chapter 8 was to introduce a sensing mechanism to detect
cold-induced SIIDs. All of the experiments conducted within the framework of
this thesis were conducted as laboratory studies with strictly controlled settings
to avoid causing potential harm to participants and exclude the effect of potential
confounding factors.

The focus of the experimental methodology described in this section was to
investigate the effects of different SIIDs in a systematic way which allows a fair
comparison of these effects between each other. Being able to compare different
SIIDs is a crucial step for enhancing SIIDs research [235], as this knowledge
is a stepping stone for building appropriate sensing, modelling, and adapting
mechanisms that would accommodate the most prominent SIID while at the
same time potentially addressing other accompanying SIIDs [256].

3.1 Systematic Approach towards Understanding the

Effects of SIIDs

In our systematic approach to investigate the effects of different SIIDs on mobile
interaction we have developed an experimental protocol that was reused across
multiple studies (Chapters 4, 5, 6). In particular, we re-used the same smartphone
tasks to quantify the effects of different SIIDs on mobile interaction. We have also
re-used the same observational, scoring, and calculation rules to construct and
record dependent variables measuring user performance in mobile interaction
under different SIIDs.
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We have always followed a within-subject experimental design, in that par-
ticipants were assigned to all of the conditions in each of the studies, and we
also counter-balanced the order of the presentation of the conditions to avoid
potential learning effects. In addition, upon the start of the experiment, we
briefed our participants about the purpose of the experiment to ensure that each
participant was equally informed about the study. In the experiment presented
in Chapter 5 we deceived our participants about the true purpose of the study to
avoid participant bias and observe natural reaction of participants to stress.

Furthermore, in all of the studies presented in Chapters 4, 5, and 6 we collected
baseline measurements of mobile interaction performance upon which the effect
of SIIDs were measured. Due to the fact that participant samples in the above-
mentioned studies were different, direct comparison of the effects of SIIDs was
not possible. However, by contrasting the improvement and/or deterioration
in mobile interaction performance for different SIIDs conditions as compared
to their relative baseline, we provide a fair comparison of the prominence of
SIIDs’ effect on mobile interaction. Moreover, we restrict our participants posture
for holding smartphone device to perform two-handed interaction: holding a
smartphone in a non-dominant hand, while interacting with the smartphone with
an index finger of a dominant hand. The holding posture is controlled in order
to eliminate the effect of the posture on mobile interaction. At the end of each
experiment we held semi-structured interviews with our participants to collect
qualitative data to support or contrast collected quantitative data. Hence, based
on this methodology we provide a comparison of the magnitudes of the effects
of different SIIDs (ambient noise, stress, and ambient light) on mobile interaction
in Chapter 7.

3.1.1 Smartphone Tasks

We quantified the effects of different situational impairments on mobile interac-
tion throughout the studies presented in this thesis on three common smartphone
tasks (Figure 3.1):

• Target Acquisition — Circular targets of similar size (r = 135px) randomly
appear on different parts of the screen according to 4x6 grid [92] with a
clearly indicated centre one at a time. Participants were asked to press the
centre of the targets as quick and as precise as possible. This task measures
participants’ reaction time (target access time) in milliseconds (ms) and
accuracy of the touch (offset size) in pixels.

• Visual Search — Application icon is selected at random and shown to the
participant for memorising purposes, and then it needs to be found among
other 24 icons randomly distributed on the smartphone screen according
to 4x6 grid [92]. This task measures participants’ memorisation time in
milliseconds (ms), visual search time in milliseconds (ms), and error rate.
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• Text Entry — A text snippet is displayed on the top of the smartphone
screen and participants are asked to type in the text following the case and
punctuation. This task measures participants’ time per character entry in
milliseconds (ms), and total error rate [248].

We argue that these three tasks are the most fundamental in mobile interaction.
Before the start of the data collection, our participants underwent extensive
training to familiarise themselves with the smartphone tasks. Moreover, the
order of the tasks was randomised each time when presented to participants.
These steps were necessary to reduce any potential learning effects. We used
these tasks to quantify the effects of ambient noise, stress, and dim ambient light
on mobile interaction presented in Chapters 4, 5, and 6 respectively. However,
in the study presented in Chapter 8 we only used target acquisition task as the
purpose of the study was not focused on quantifying the effects of cold ambience
on mobile interaction, but to propose a sensing mechanism to detect cold-induced
situational impairments.

Figure 3.1: Interface of the application with Target Acquisition Task (A), Visual Search
Task (B-C), and Text Entry Task with user’s input (D-E)

3.2 Data Analysis

We applied a mixed-methods approach, which implies that we utilised both quan-
titative and qualitative techniques to analyse the data collected in our studies.

3.2.1 Quantitative analysis

Below we provide an overview of the quantitative methods utilised in the data
analysis of the research conducted as part of this thesis. We use confidence
level of 95% (i.e., p − value ≤ 0.05) to declare the statistical significance and to
reject null hypothesis. This is a common convention used in the discipline of
Human-Computer Interaction [127].
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In Chapter 4 regarding the effect of ambient noise on mobile interaction,
we apply statistical modelling. Statistical modelling in data analysis is used to
achieve three main purposes [124]:

• Predict an outcome variable;

• Extract information;

• Describe stochastic structures.

In this chapter we utilise statistical modelling to predict the outcome variable
and explain the effect of each of the explanatory variables (predictors) on the
dependent variable. To be precise, we built generalised linear mixed effects
models to predict variables quantifying user performance (e.g., target acquisition
time) based on the predictor variables: fixed (e.g., conditions and other contextual
factors) and random effects (e.g., participant). Random effects in generalised
linear mixed effects models allows us to account for individual variation among
participants, thus allowing us to apply the model to a broader inference about
the larger population of participants. Furthermore, statistical modelling allows
us to consider many variables that may have an effect on participants’ perfor-
mance during mobile interaction. For example, participant being a native English
speaker could have an effect on their mobile interaction behaviour when listening
to English speech. Similarly, participants’ habit to listen to music while inter-
acting with their smartphones could have an effect on their performance when
performing the experiment under the music conditions.

In Chapters 5 and 6 we adopt methods from frequentist statistical inference,
namely Analysis of variance, commonly known as ANOVA. In particular, we
employ repeated measures ANOVA, as we follow within-subjects experimental
design in both of the studies presented in Chapters 5 and 6. Frequentist statistical
inference methods are broadly used in HCI research to evaluate the differences
in outcome variables under varying conditions [127].

In Chapter 8 we use correlation analysis to understand the relationship be-
tween two variables: finger temperature and smartphone battery temperature to
evaluate how they behave under the cold ambience. Correlation analysis is also
widely employed within the HCI research to describe the type of the relationship
and the degree of the dependence between a pair of variables [127]. As the data
collected in the study presented in Chapter 8 was normally distributed, we used
Pearson product-moment correlation to examine the relationship between the
observed and manipulated variables [120].

3.2.2 Qualitative Analysis

Together with the quantitative analysis, we applied qualitative analysis to un-
derstand the data collected during semi-structured interviews that we held with
participants in the studies presented in Chapters 4, 5 and 6. This approach was
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applicable to our data analysis as participants’ perception and opinions about
their performance under various conditions throughout the studies presented
in Chapters 4, 5 and 6 was important to us in order to either support or contrast
results derived from the quantitative analysis. We did not collect any qualitative
data in the study presented in Chapter 8 because we were interested in observing
a natural physiological reaction of human finger temperature and smartphone
battery temperature to the variations in ambient temperature.

In our qualitative analysis we used two main methods – In Vivo Coding [165]
(Chapters 4 and 6) and Thematic Analysis [29] (Chapter 5) – to explain our
qualitative data. In Vivo Coding is one of the most common methods used in
HCI research to analyse qualitative data [165]. It utilises words and phrases
taken from participants’ own language and is appropriate for studies that honour
participants’ voice [165].

The process of performing In Vivo Coding is the following. First, we process
the raw data by directly transcribing participants’ answers and remarks collected
during the interview. Then we identify relevant and repeating concepts and
label them with a word or a phrase describing the concept. This allows us to
identify clusters and segments related to particular research question, hypothesis,
or theme [165].

In Chapter 5 to further enhance our qualitative data analysis, we employ The-
matic Analysis following the methodology suggested by Braun and Clarke [29]:

1. We, first, familiarised ourselves with the data.

2. Then we generated codes using In Vivo Coding approach.

3. After that, we identified the themes from the codes.

4. Next, we reviewed these themes.

5. Afterwards, we defined the themes.

6. Finally, we presented the themes as part of the results of the study.

We involved more than one researcher to perform In Vivo Coding and The-
matic Analysis to increase the confidence and the validity of the qualitative
results [22].

3.3 Ethical Considerations

We accounted for multiple potential issues with our experiments by employing
several precautions to manage risks that might have occurred during the studies
presented in Chapters 4, 5, 6, and 8. First of all, we assign each participant with
an anonymous ID and the collected data is associated with the participant ID only.
We ensure that the participants are not directly identifiable. Furthermore, the soft-
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ware used for data collection does not store any sensitive personal information
(e.g., name, ethnicity). When storing the data, we use secure servers protected
with firewall and control the access to the data through an authentication mech-
anism. The authentication mechanism requires having a secure password and
requests change of the password every 6 months. This is how we solve the issue
related to the anonymity of the participants and their data storage.

In each of the studies presented in Chapters 4, 5, 6, and 8 we provided our
participants with information in a written Plain Language Statement. Further-
more, each participant’s consent was established by signing and returning a
Consent Form. We held individual intake sessions with each of the participants
where we explained the details of the study and potential risks associated with
it. Moreover, participants had the opportunity to read both the Plain Language
Statement and a Consent Form before agreeing to participate in the experiment.
We commenced the experiment and data collection only after obtaining partici-
pant’s agreement. Moreover, we excluded any risks that might be harmful to the
participants’ mental or physical well-being. Precisely, in the work presented in
Chapter 4 we limited the sound levels to 55 decibels – an acceptable sound level
for everyday life; in the study presented in Chapter 5 we induced mild stress on
the participants and excluded involving physical stressors (e.g., electrical shock);
in the experiment described in Chapter 8 we exposed our participants to -10◦C
while providing them with a winter attire. Furthermore, our participants had the
right to withdraw from the studies at any point if they wished to do so or felt any
discomfort caused by the study protocol.

Finally, we have also accounted for possible dependent relationships between
the researchers and participants (e.g., students enrolled in the subjects instructed
by any of the research confederates involved in the study) by stating in the Plain
Language Statement and in the Consent Form that unwillingness to participate
and withdrawal from the study at any point would not have an effect on the
students’ grades.

3.4 Limitations

The methodology presented in this thesis has several limitations. First, the study
settings were strictly controlled. In particular, we ran the experiments under the
laboratory settings to provide fair comparison of the effects of SIIDs on mobile
interaction performance. Nevertheless, we acknowledge that the effects of SIIDs
under the naturalistic conditions could be more prominent [231]. For example,
participants in our lab studies experienced certain levels of noise (55 decibels),
stress, dim light (20 lux), and cold (-10◦C); however, in the real world scenario
the levels could have been higher (e.g., louder noise, more stress, darker, and
colder environment).
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Furthermore, we conducted our studies under a limited number of conditions.
For example, in Chapter 4 we used such types of ambient noise as music with
fast and slow tempo, indoor and outdoor urban noise, and meaningful and
meaningless speech. It is entirely possible that in a naturalistic environment
ambient noise types would be more diverse, and multiple noise types could occur
simultaneously.

Furthermore, in Chapter 5 we strictly controlled the levels of stress induced
on our participants. It is possible that in a real world scenario, participants can
be exposed to stronger levels of stress. Nevertheless, it was necessary to strictly
control stress induction by following the established protocol to avoid causing
harm to our participants, and even a mild incidence of stress was sufficient to
adversely affect participant’s mobile interaction.

We also acknowledge that across the four user studies presented in this thesis,
the number of participants did not exceed 28 people. This sample size might
be considered low in other disciplines; however, we followed the local guide-
lines for the HCI discipline. According to HCI user study standards, the total
number of participants above 20 is sufficient to perform statistical analysis [42].
Furthermore, due to the fact that we employed a within-subject experimental
design, the statistical power of our analysis increases despite the limited number
of participants.

Further to this, we used the same smartphone across the studies presented in
Chapters 4, 5, and 6. It is possible that using a different device could have led
to a higher variability of the results due to different specifications of the device
(e.g., screen contrast, screen size). Nevertheless, we argue that controlling for the
device was necessary in order to draw fair comparisons between the effects of
different SIIDs on mobile interaction performance.

In addition, in Chapter 6 we examined only two levels of ambient illumination
– normal and the dim light, and did not study the effect of bright ambient light
(e.g., outdoor illuminance) on smartphone interaction performance. However,
this exclusion was necessary to eliminate the effect of additional external factors
(e.g., glare) on smartphone interaction performance.

In chapter 8 we limited the room temperature to -10◦due to safety concerns.
Furthermore, we instructed our participants to not wear gloves or warm their
hand by any other means, unlike in naturalistic conditions in order to: 1) avoid
touch inaccuracies during mobile interaction; and 2) observe a steady finger
temperature drop.

Moreover, the types of smartphone tasks presented in the methodology of this
thesis were limited to target acquisition, visual search, and text entry. However,
in a more naturalistic setting, users may perform more complex tasks, requiring
more cognitive demand. Nevertheless, we argue that these tasks are basic for
smartphone interaction, and on a more complex tasks, the effects of SIIDs might
be more profound.
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Finally, we restricted our participants to only one interaction mode with the
smartphone – using the index finger. We argue that controlling the interaction
mode was necessary to draw a fair comparison between the effects of ambient
noise, stress, and ambient light, while at the same time not making the individual
experiments overly long.

3.5 Conclusion

This chapter summarised the primary methodological methods used in the stud-
ies presented in this thesis. Overall, it can be concluded that we quantified the
effects of different SIIDs on mobile interaction in the laboratory environment
with strictly controlled settings to provide fair conditions and comparisons of
the effects of different SIIDs on mobile interaction. The aim of the thesis is to
quantify the effects of different SIIDs on mobile interaction and contrast their
effects as well as to introduce a sensing mechanism to detect cold-induced SIIDs.
The following Chapters 4, 5, 6, and 8 present scientific articles on this research
topic published at peer-reviewed flagship venues.



Chapter 4

Quantifying the Effects of Ambient
Noise on Mobile Interaction

In this chapter we present our work that quantifies the effects of different ambient
noise types on mobile interaction. Namely, we asked the participants to complete
smartphone tasks (target acquisition, visual search, and text entry) under 4 types
of ambient noise conditions:

• Classical music with slow and fast tempo;

• Urban noise – outdoor and indoor;

• Speech – meaningful (in English) and meaningless (in Kazakh);

• Silence, which acted as a baseline condition.

These are four common ambient noise types that might be present during mobile
interaction (e.g., , interacting with the smartphone while listening to music, while
standing outside near a noisy road, while being involved in a conversation, or
in complete silence). Furthermore, these types of ambient noise have previously
been shown to influence human behaviour: music tempo can define the speed
of human actions [43, 162, 167], urban noise [18, 46] and speech [155, 226] can
adversely affect human memory and cognitive performance. However, their
effect on mobile interaction has not been previously investigated.

This article shows that when exposed to music with both fast and slow tempo,
participants were significantly quicker and less accurate in completing the target
acquisition tasks, compared to the silent condition. Our results also demonstrate
that when exposed to urban noise conditions, participants were significantly
quicker when completing the target acquisition tasks; however, unlike music
conditions, urban noise did not affect participants’ accuracy in performing the
target acquisition tasks. In addition, there was no statistically significant effect of
speech conditions on the target acquisition task.
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In regard to the visual search task, our findings show that music and speech
did not have a statistically significant effect on participants’ performance. How-
ever, when exposed to the indoor urban noise condition, participants were signif-
icantly faster to memorise icons as compared to the baseline condition.

Finally, with respect to the text entry task, our work shows that the meaningful
speech condition, dissimilar to music and urban noise, significantly impaired
participants’ performance. In particular, participants were slower to type in
the provided text when listening to meaningful speech when compared to the
baseline.

Overall, this chapter investigates the effects of noise-induced SIIDs. There-
fore, our work contributes towards accumulating knowledge in SIIDs research.
The detailed motivation, analysis, results and discussion of our approach are
presented in the attached publication in Section 4.1.

4.1 Publication
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In this paper we investigate the effects of one such situational impairment on mobile interaction that remains
relatively underexplored [46]—ambient noise. Ambient noise is defined as any noise the user is exposed to while
their attention is directed at some task or activity [25]. This includes disruptive sounds like the hammering of
construction work, the barely perceptive humming of a fridge, the pleasant music playing on headphones, and the
disruptive conversation of co-workers. Even though people commonly use their mobile devices in environments
where they are exposed to some level of ambient noise (e.g., public places, cafeterias) [25], little is known about
their effect on mobile interaction. This paper aims to fill this gap.

Research in Cognitive Science and related fields has highlighted the negative impact that noise has on human
behaviour [22, 39], cognitive performance [5, 44, 54], and emotional state [25]. Banbury et al. suggest that this
effect is mainly caused by the spread of attention while completing a primary task [6]. They state that even if the
attention is directed elsewhere, sound is perceived and processed by the brain and, hence, diverts the attention
from the main task, causing degradation in performance. Therefore, it is likely that ambient noise can also have
an adverse effect on mobile interaction in certain situations. However, due to limited research, it is unclear what
is the magnitude of this effect, if there are any differences between different types of noises, and how ambient
noise compares to other situational impairments in the context of mobile interaction.

To explore these issues, we investigate how different categories of common ambient noises —music, urban noise,
and speech — affect mobile interaction while performing typical smartphone activities: target acquisition, visual
search and text entry. To further unpack the effects of the different types of noise, we explore two variants of each.
We presented users with slow and fast tempo music, as previous work has shown that different music tempos
have varying effects on cognitive performance [22, 39]. We also presented users with two types of urban noise:
outdoor and indoor. Outdoor urban noise has been shown to have a significant adverse effect on memory tasks.
However, there is no consensus regarding the effect of indoor urban noise: some studies report its distracting
effect during memory tasks [5, 54], while others did not observe any effect on cognitive performance [44]. Finally,
we presented users with two types of speech: meaningful and meaningless speech. Meaningful speech is speech
spoken in a familiar language, whereas meaningless speech is defined as the speech presented in a language
unfamiliar to the listener [32]. To contextualise our study within the body of research on situational impairments,
we compare our findings to previous work on cold-induced situational impairments [45], which collected similar
data to the one described in our study.
In summary, this paper advances the state-of-the-art on situational impairment research in Ubiquitous Com-

puting through three main contributions. First, we investigate how different types of ambient noise affect the
interaction with mobile devices during three typical activities: target acquisition, visual search, and text entry.
Second, we contribute towards the situational impairments research agenda by comparing our findings to the
effects of cold-induced situational impairments. Third, we discuss and provide recommendations on the detection
of certain types of ambient noise that can affect mobile interaction and how to accommodate a situationally
impaired user in such cases.

2 RELATED WORK

2.1 Impact of Situational Impairments on Mobile Interaction
Previous research has shown that interaction with mobile devices can be adversely affected by implicit envi-
ronmental and contextual factors, subjecting the user to what is known as a situational impairment [46, 49]. A
number of causes for situational impairment have been studied within the HCI/UbiComp community, including
the effects of ambient temperature [17, 45], motion [14], and encumbrance [37, 38]. Regarding cold-induced
situational impairments, Goncalves et al. and Sarsenbayeva et al. showed a negative effect of cold temperatures
on smartphone input performance [17, 45]. The authors found that colder temperatures are associated with lower
throughput and accuracy in tapping tasks. Other studies investigated the effect of user motion on interaction
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with mobile phones. For example, walking has been found to adversely affect mobile interaction in completing
typing tasks [14, 36], and target acquisition tasks [48]. Furthermore, Ng et al. [37, 38] demonstrated the negative
impact of encumbrance on target acquisition tasks during mobile interaction. In particular, encumbrance has
been shown to decrease accuracy, while increasing error rate and target selection time [38]. Given the effect
situational impairments have on mobile interaction, previous work was conducted to explore ways of detecting
situational impairments and develop design solutions to accommodate them. For example, Sarsenbayeva et al.
[47] suggest using smartphone’s battery temperature to detect ambient temperature drop. Similarly, Goel et al.
[14] successfully utilise a smartphone’s accelerometer sensor to detect walking. In terms of design solutions,
researchers have shown that increasing target size [48], providing audio guidance [52] and adaptive text entry
[14] can compensate the negative effect of situational impairments.
In comparison to other causes of situational impairment, the effect of ambient noise on mobile interaction

lacks appropriate investigation [46]. Previous work emphasises the importance of studying unexplored causes of
situational impairment in order to broaden the research scope in this area [46]. There is little prior work that has
studied the effect of ambient noise on mobile interaction. A study by Hoggan et al. [21] showed that loud noise
levels had an adverse effect on participants’ performance when completing text entry tasks on mobile phones.
However, the aim of their study was simply to identify the noise threshold at which the audio and tactile feedback
become ineffective. Harvey & Morgan [18] demonstrated that noisy environments have a negative effect on user
performance during web search tasks. They showed an effect of noise on task performance using questionnaire
data only and did not provide any quantitative metrics regarding performance. To the best of our knowledge,
this is the first study to investigate and quantify the effect of ambient noise as a potential cause of situational
impairment during mobile interaction.

2.2 Effect of Ambient Noise on Human Behaviour and Cognitive Performance
Previous work has shown that ambient noise has an effect on human daily activities in terms of behavioural
[29, 33, 39], emotional [25], and cognitive [5, 54] performance. As mobile interaction is now an essential part
of people’s everyday activities, it is important to investigate its impact on mobile interaction. Next, we discuss
related work on the impact of music, urban noise and speech on human behaviour and cognitive performance.

2.2.1 Effect of Background Music on Human Behaviour and Cognitive Performance. Previous works have
investigated the effect of music on people’s physical activities [33], cognitive performance [26], and mood [25].
Cassidy et al. showed a significant negative effect of heavy metal music on immediate recall, free recall, delayed
recall and performance in Stroop tasks [15] compared to a silent condition [10]. Similarly, Wen et al. demonstrated
that performance in recall is significantly higher under classical music in contrast to rock music [55]. However,
there is no consensus regarding the effect of background music on reading [25]. Whereas some studies report an
increase on reading performance [41], other studies failed to replicate this effect [32]. Another study showed
that slow tempo music resulted in longer reading time and poorer reading efficiency in contrast to fast tempo
music [25]. Henderson et al. ’s results suggest that what is detrimental is not the music itself, but the speech
contained in it [19]. The authors found that participant performance in completing reading tasks significantly
decreased when they were exposed to popular music containing lyrics, but found no significant decrease with
classical music or silence [19]. Given these results, we evaluate the effects of music and speech in separate study
conditions.
The most widely studied musical element in terms of the effect of music on human behaviour and cognitive

performance has been the tempo, i.e., the speed of the underlying beat of the music. Related work suggests that
the faster the tempo, the faster people complete tasks. Milliman showed that faster tempo increased the walking
speed of customers, decreasing the average time customers spent in a store [34]. Research in restaurants and
cafeterias has shown that faster music also caused people to eat and drink faster [9, 33, 35]. Conversely, slower
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music was shown to slow down people’s eating and drinking [9, 33, 35] as well as to prolong the perception of
elapsed time spent in casinos [40].

Despite accelerating task completion, previous research suggests that music with a faster tempo is also more
cognitively demanding. For instance, Holbrook showed that fast tempo music demanded more cognitive resources
to be processed compared to slow tempo music [22]. According to North et al. , this phenomenon occurs because
more information is perceived and processed by the listener’s brain when fast tempo music is played than when
slow tempo music is played [39]. Given the different effects of the tempo of the music, we evaluated the effect of
music on mobile interaction with fast and slow tempo music.
An interaction effect between the tempo of the music and the gender of the listener has also been identified.

For example, Kallinen showed that female and male participants perceived information differently under slow
and fast music conditions [25]. In this study, the author found an inverse effect of the tempo of the music on the
perception of news articles — a slow tempo led male participants to evaluate the news as negative, whereas it led
female participants to evaluate the same set as positive. Further, men read more slowly when slow tempo music
was playing, whereas women read more slowly when no music was playing. This suggests that it is important to
ensure appropriate gender balance in the participant sample to avoid any gender bias in the results.
Taking into consideration the effect of music tempo on other aspects of human behaviour and cognitive

performance, we chose to investigate its effect on mobile interaction. We hypothesise that fast tempo music
will result in a faster completion of tasks when compared to the silent condition, particularly those that require
fine-motor movements (e.g., target acquisition tasks).

2.2.2 Effect of Urban Noise on Human Behaviour and Cognitive Performance. As with background music, urban
ambient noise is also known to influence human behaviour and cognitive performance. In this study, we focus
on two types of urban noise: outdoor and indoor. We define outdoor urban noise as noise containing sound as
sampled in an urban area: a combination of street, construction, and traffic sounds. We define indoor urban noise
as the noise coming from an office or cafeteria: working sounds, people’s murmur, and chatter.
A negative effect of urban outdoor noise on human performance has been shown in several studies. For

example, Cassidy et al. showed a significant negative effect of outdoor urban ambient noise on free, immediate,
and delayed recall and Stroop tasks [15] when compared to no noise [10]. Furthermore, Stansfeld et al. showed
that communities exposed to lower traffic noise had a lower rate of psychiatric hospitalisation [50]. Previous
work has also shown that an exposure to a broadband noise at 100 dB for 30 minutes can lead to significant
impairments when performing memory tasks [2].
Regarding urban indoor noise, Banbury and Berry demonstrated that students’ performance in completing

mathematical and recall tasks was significantly worsened with its presence [5]. Furthermore, a two-year lon-
gitudinal study by Cohen and Weinstein showed that children in noisy schools with sound levels of 60-80 dB
performed worse in solving puzzles and mathematical tasks [11], as reported by Holmberg and Coon [23].
This literature coupled with the fact that it is common practice for mobile device users to interact with their

devices while being exposed to urban outdoor (e.g., streets) and indoor (e.g., office, cafeteria) noise, suggests that
these types of noises can have an effect on mobile interaction, which we investigate in this paper.

2.2.3 Effect of Speech on Human Behaviour and Cognitive Performance. Previous research hasmade a distinction
between the effects of two types of speech on human behaviour and cognitive performance [32]: meaningful —
speech that the listener can understand — and meaningless — speech that the listener does not understand. For
instance, Martin et al. found a detrimental effect of continuous meaningful speech on reading performance when
compared to silence [32]. The authors compared the effect of meaningful and meaningless speech on reading
comprehension and showed that reading performance is significantly worse under both speech conditions as
compared to silence, with a stronger effect for meaningful speech [32].
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Previous work has also shown that both meaningful and meaningless speech have an equally distracting effect
on memory recall [51]. Tremblay et al. found that natural speech was more disruptive than sine wave speech
(i.e., a form of artificially degraded speech) on tasks requiring memory recall [51]. Moreover, in a study reported
in [43] meaningless speech was shown to have a negative effect on memory tasks. Salame et al. showed that
immediate memory was disrupted the most by the the unattended foreign language speech, when compared
to other conditions such as instrumental music, urban noise and silence [44]. These results contradict previous
findings that did not find any effect of meaningless speech on cognitive performance in phonological judgement
tasks [3]. Nevertheless, the authors argue that the phenomenon needs further investigation [3]. Finally, speech is
also known to reduce performance in completing arithmetic tasks and memory for prose tasks [4, 54].
In this paper we explore the effect of both meaningful (English) and meaningless (Kazakh) speech on mo-

bile interaction. Based on the literature, we hypothesise that the performance in tasks with higher cognitive
requirements (e.g., text entry) is likely to deteriorate while hearing background speech.

3 STUDY
We operationalise mobile interaction in terms of three common activities conducted on smartphones: target
acquisition, visual search, and text entry. For this study we used two software applications as experimental tasks,
TapCircle and FindIcon, previously used to investigate the effect cold-induced situational impairments on mobile
interaction [45]. This allows for direct comparison of our results to those previous findings. Additionally, we
developed a new custom software called TypeMe. The tasks presented by TapCircle measures users’ fine-motor
performance during target acquisition, the task in FindIcon measures users’ cognitive performance during visual
search [45], and the task in TypeMe measures users’ text entry performance. The three tasks were combined into
one Android application and were presented in a random order. Details for each task are presented below, the
application interface is shown in Figure 1.

Fig. 1. Interface of the application with TapCircle task (A), FindIcon task (B-C), and TypeMe task with user’s input for easy
and difficult texts (D-E)

3.1 Tasks
3.1.1 Task 1: Target Acquisition. Circular targets with a radius of 135 pixels randomly appear one at a time

in each position of a 4×6 grid at least once. A similar task was used by Henze et al. [20]. Every target has an
indicated centre and participants were instructed to tap these circles as quickly and as precisely as possible. The
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application logged the coordinates of the target’s centre and participant’s touch point, the elapsed time, and the
position of the circle on the grid. Figure 1-A shows a screen of the TapCircle task interface.

3.1.2 Task 2: Visual Search. In the FindIcon task, participants were first presented with an icon which they
subsequently had to locate within a grid of other icons. Participants were free to look at the target icon for as
long as they wanted to memorise it. In the following screen, participants were required to locate and tap the
target icon amongst a set of 24 icons (100×100px) in a 4×6 grid. To minimise any possible learning effects, each
of the 24 icons was designated as a possible target icon in random order in each condition. The application also
ensured that every grid position hosted a target icon in a random order. To make our results comparable, we used
the same set of application icons as described by Sarsenbayeva et al. [45]. Figures 1-B-C show the interface of the
task. The application recorded time spent on memorising an icon, time spent on locating and tapping the target
icon, grid position of the icon, and the coordinates of the centre of the icon and of the participant’s touch point.

3.1.3 Task 3: Text Entry. In the text entry task, the application presented some text at the top of the screen
and participants were asked to type it verbatim in the text-box below it. In order to have varying complexity, we
distinguished between easy and difficult texts. Easy texts consisted of only one sentence and contained common
words that are used on a daily basis. Difficult texts were selected from Shakespeare’s sonnets and consisted of
more than 1 sentence. We quantified the difficulty of the sentences using the Flesch-Kincaid readability test
[28]. The easy texts had an average Flesch-Kincaid grade level of 1.6, whereas the difficult texts had an average
Flesch-Kincaid grade of 5.1. Participants completed both an easy and a difficult text during the task. Figures 1-D-E
show the task as presented to the participants, including examples of an easy and a difficult text.

3.2 Hardware
Participants completed all tasks using a Samsung Galaxy S7 smartphone running Google’s Android 7.0 (Nougat).
The smartphone has a 5.1-inch screen with a resolution of 1080×1920px. The smartphone was selected due to
identical screen size and resolution to the smartphone’s screen parameters used in Sarsenbayeva et al. ’s evaluation
of cold-induced situational impairments [45]. This allowed us to directly compare the effects of noise-induced
situational impairments to cold-induced situational impairments on mobile interaction.

3.3 Experimental Conditions
We selected the following experimental ambient noise conditions for this study given their demonstrated effect
on human behaviour and cognitive performance in the literature:

• music (fast and slow tempo)
• urban ambient noise (indoor and outdoor)
• speech (meaningful - English, meaningless - Kazakh)
• silence, which acted as a control condition.

In the music conditions we used the same composition sampled at fast and slow rates to avoid other characteristics
of the music, other than tempo (e.g., pitch, timbre), to affect the participants performance. This is because tempo
is considered to be the main factor in music to affect human behaviour and performance [25]. We chose music
that did not contain any lyrics in order to avoid overlap with the speech condition. Given these guidelines, we
selected Bach’s "Brandenburg Concerto No. 2". As the original tempo of the composition is considered to be
fast (92 beats per minute) [25], we used it as is for the fast tempo music condition. For the slow tempo music
condition we sampled the same composition at 60 beats per minute, below the 70 beats per minute considered in
the literature to be slow [25], without any noticeable decrease in sound quality.
As for the urban outdoor ambient noise condition, we chose a clip of street noise containing road traffic,

vehicles’ motor sounds, honking, and indistinguishable crowd speech. For the urban indoor condition we chose a
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cafeteria noise composed of coffee machine, cutlery sounds, and indistinguishable people’s murmur. Both of the
sounds were obtained from YouTube (urban outdoor 1, urban indoor 2).

For the meaningful speech condition, we selected a weather forecast presented in English. For the meaningless
speech condition we selected TV news presented in a language that participants did not understand (Kazakh).
Both clips were narrated by a female voice and did not contain any other sounds (e.g., background noise, music,
speech of different people).

The volume level for all of the ambient noise conditions was kept in the range of 55–60 dB following Iwanaga
and Ito’s design guidelines, to avoid discomfort to our participants [24]. All audio files were long enough for
participants to complete all tasks before the audio clip ended.

3.4 Participants and Procedure
We recruited twenty-four participants (12 male, 12 female) through our university’s mailing lists. We balanced gen-
der as the literature suggests men and women can react differently to the same noise conditions [25]. Participants
were aged between 19 and 54 years (M = 31.67, SD = 8.95) and had a diverse range of educational backgrounds
(e.g., Accounting, Geology, Linguistics, Biochemistry, Computer Science, Elderly Care). All participants were
fluent in English and used it as their main language of communication at work. The foreign language presented
in this study (’meaningless speech’) was not known to any of the participants. Each participant was assigned a
unique anonymous ID (participant ID) in our study.
Our study had a within-subjects experimental design. Condition acted as an independent variable and the

order of conditions presented to the participants was counter-balanced. This way, we minimised the impact of
any potential fatigue or learning effects. Unlike the study protocol presented in [45], participants completed
all tasks in only one smartphone holding posture as opposed to two different holding postures. We instructed
our participants to complete all tasks in two-handed interaction mode while standing (i.e., interacting with the
phone with index finger of the dominant hand while holding the phone in the non-dominant hand [45]). Figure 2
shows the participant completing a task during the experiment. As each participant was required to complete
three tasks in each of seven conditions, including a second smartphone holding posture (and essentially doubling
study duration) would have likely introduced considerable fatigue and irritation among our participants. Each
participant was rewarded with a $10 voucher for participation.

We collected data for several dependent variables to measure performance while conducting the tasks. In the
target acquisition task, we recorded the time taken to tap a circular target and the size of the tap offset. In the
visual search task, we recorded the time taken to find the correct icon, the time taken to memorise an icon, and
the number of incorrectly selected icons. Finally, in the text entry task, we recorded the time taken to complete
typing a text, the number of characters per text, and the number of errors within the text that were not corrected
by participants. We measured the typing performance with the time taken per character entry by dividing the
total typing time by the number of characters per text.
Upon arrival at our usability lab, participants were briefed about the purpose of the study and asked to sign

a consent form. We then collected their personal details (age, gender, background, native language, dominant
hand) and performed a training procedure in order for the participants to get acquainted with the tasks. During
the training, participants completed all three study tasks in a random order, until they were comfortable with
each one, in order to minimise any potential learning effects.
Once the training was completed, participants started the experiment. As the study contained four main

conditions (silence, music, urban noise, speech), we created 24 combinations of the conditions to ensure proper
counter-balancing. This means that no participant had a repeated order of conditions presented to them. Three

1https://www.youtube.com/watch?v=cDWZkXjDYsc
2https://www.youtube.com/watch?v=lSlOXT3AKBo
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(a) Laboratory setting of the ex-
periment

(b) Smartphone holding posture

Fig. 2. Participant completing tapping circles task

of the conditions included sub-conditions (music fast/slow tempo, urban noise outdoor/indoor, speech mean-
ingful/meaningless). We randomly allocated the participants into two groups. Within each of these conditions,
the first group was exposed to fast music tempo, indoor urban noise, and meaningful speech conditions first.
The second group, opposite to the first group, was exposed to slow music tempo, outdoor urban noise, and
meaningless speech first. Both groups experienced both sub-conditions.
During the experiment, participants had to complete the same set of tasks in each of seven conditions. Each

round of tasks consisted of: target acquisition, visual search, and text entry. The order of the tasks was randomised
by the application, and the participants had to complete each task one after another without taking any breaks.
Once the sound of a condition started playing, the researcher started a timer. After being exposed to the sound
for one minute, the participant was then instructed to begin that round of tasks. Listening to the sound for one
minute ensured participants were more accustomed to that particular ambient noise condition [17, 45].

After the experiment was completed, we conducted a short semi-structured interview. Participants were asked
about their personal perception of their performance during the conditions, whether any of the sounds were
experienced as particularly distracting, and whether they usually listen to music or any other sounds while
working, reading, or performing tasks that demand concentration. Finally, we enquired if they listen to music or
other type of audio when they interact with their smartphones. The experiment lasted approximately 70 minutes
per participant, including briefing, training, data collection, and final interview.

4 RESULTS
From our 24 participants, we collected 15,556 and 4,094 target hits for the tapping the circles and finding icons task
respectively, and 336 typed sentences for the typing task. Data collected from left-handed participants (N = 2)
was mirrored relative to the X-axis of the screen for the tapping a circle and finding an icon tasks.

To investigate whether mobile interaction was affected by ambient noise, we built generalised linear mixed-
effect models to describe participant performance in the three tasks (target acquisition, visual search, and text
entry). Apart from the ambient noise conditions (discussed in Subsection 3.3), we also considered other factors
that may affect participants’ performance during mobile interaction. We provide a list of these variables below.
Unless otherwise stated, the variable was included for all conditions (silence, music, urban noise, and speech).

• Gender - A binary variable indicating gender of the participant.
• Age - A numeric variable indicating the age of the participant.
• Music listener - A binary variable indicating whether the participant typically listens to music or other
sounds while working, reading, or performing tasks that require cognitive demand. We only used this
predictor in models predicting the effect of music on mobile interaction.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 2, Article 82. Publication date: June 2018.



Effect of Distinct Ambient Noise Types on Mobile Interaction • 82:9

• Native English speaker - A binary variable indicating if the participant is a native English speaker. We
only used this predictor in models predicting the effect of speech on mobile interaction.

• X centre coordinate - X-axis coordinate of the centre of target (circle or icon for tapping a circle and
finding an icon task respectively).

• Y centre coordinate - Y-axis coordinate of the centre of target (circle or icon for tapping a circle and
finding an icon task respectively).

• Participant ID - Participant ID was treated as a random effect in order to control for individual differences
in our models.

We applied a backfitting algorithm using AIC to all our models for predictor selection. AIC penalises the
inclusion of additional predictors, which could lead to overfitting of a model. Finally, to ensure the validity of
the models we checked for the presence of multicollinearity. All of the predictors for each of the presented
models had a variance inflation factor between 1 and 1.38, well below the often used threshold of 5 to 10 to detect
multicollinearity.

4.1 Results: Background Music Condition
The tested background music conditions are fast tempo music, slow tempo music, and silence. The conditions are
tested across all three defined tasks. We discuss the results per task below.

4.1.1 Target Acquisition. Our first model describes the time taken to hit a circle. The final prediction model
retained 3 of the 6 predictors, as shown in Table 1. The model is statistically significant (χ 2(4) = 56.05, p < 0.01)
and describes 7% of variance of the time taken to hit the circle (Marдinal R2 = 0.07, Conditional R2 = 0.28). The
results indicate that participants were significantly quicker to tap circles in the fast and slow music conditions as
compared to the silent condition. However, we did not find a significant difference between the fast and slow
music condition; Wilcoxon signed-rank test (V = 1.17e+06, p = 0.21). A boxplot of the time taken to complete
the tapping circles task across the different conditions is shown in Figure 3 (a).

Table 1. Effects of model factors on predicting time taken to hit a circle in music condition

Estimate Std. Error t value Pr (>|t|)

(Intercept) 4.63e+02 4.55e+01 10.19 7.68e-10 ***
Condition (Fast music) -1.51e+01 3.41 -4.43 9.61e-06 ***
Condition (Slow music) -2.01e+01 3.41 -5.91 3.71e-09 ***
Y centre coordinate 8.76e-03 2.62e-03 3.35 0.001 ***
Age 3.98 1.38 2.89 0.008 **

Significance: ‘***’ <0.001, ‘**’ <0.01, ‘*’ <0.05

Mean values for the offset size per condition for the tapping task are visualised in Figure 3 (b). We built a
model to describe the mean offset size when tapping a circle. The final model contains both conditions and the X
centre coordinate as predictors, and is summarised in Table 2. The model was significant (χ 2(4) = 63.43, p <
0.01, Marдinal R2 = 0.01, Conditional R2 = 0.10). Participants were significantly less accurate when tapping the
circles in the slow music condition as compared to the silent condition. A Wilcoxon signed-rank test did not
show a significant difference between the offset size in the fast tempo music condition and the slow tempo music
conditions (V = 1183600, p = 0.21). From Table 2, we observe that the offset is smaller for the circular targets
located closer to the edge of the screen on which participants held their phone.
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(a) Time taken to tap a circle (b) Offset size

Fig. 3. Mean values for time taken to tap a circle and offset size per condition

Table 2. Effects of model factors on predicting the offset size when tapping a circle in music condition

Estimate Std. Error t value Pr (>|t|)

(Intercept) 4.47e+01 2.22 20.17 <2e-16 ***
Condition (Fast music) 1.58 1.01 1.57 0.12
Condition (Slow music) 2.74 1.01 2.72 0.007 **
X centre coordinate -1.01e-02 1.34e-03 -7.52 6.22e-14 ***

Significance: ‘***’ <0.001, ‘**’ <0.01, ‘*’ <0.05

4.1.2 Visual Search. Next, we built a model to describe the time taken to memorise an icon. The final prediction
model contained only age as a predictor. The direction of age was negative, indicating that younger participants
took less time to memorise an icon. The model was statistically significant (χ 2(1) = 12.26, p < 0.01) and described
9% of variance of time taken to find an icon (Marдinal R2 = 0.09, Conditional R2 = 0.22).

We built another model to describe the time taken to find an icon. The final model again contained only age as
a predictor, and direction was again negative (indicating that younger participants took less time). The model
was statistically significant (χ 2(1) = 18.22, p < 0.01) and described 2% of variance of the time taken to find an
icon (Marдinal R2 = 0.02, Conditional R2 = 0.08).

Finally, we built a model to describe the number of errors made by participants when finding an icon. However,
none of the predictors sufficiently described this dependent variable. We were thus unable to create a model for
this variable.

4.1.3 Text Entry. The last task for the background music condition is the typing task. We built a model to
predict the time per character entry. However, we were unable to create a model for this variable as none of the
predictors sufficiently described it.

Following this, we build a model to describe the number of errors made by participants when typing a message.
The final model contained one predictor (participant age). Participants of younger age made fewer errors. The
model was statistically significant (χ 2(1) = 8.55, p < 0.01) and described 12% of variance of the number of
uncorrected errors (Marдinal R2 = 0.12, Conditional R2 = 0.31).
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4.2 Results: Urban Noise Condition
The tested urban noise conditions are outdoor, indoor, and silence. The conditions are tested across all three
defined tasks. We discuss the results per task below.

4.2.1 Target Acquisition. We first built a model to describe the time taken to tap a circle. The final model was
described with three predictors: condition, Y centre coordinate of the circle, and participant age. We provide a
summary of the factors in Table 3. The model was statistically significant (χ 2(4) = 54.73, p < 0.01) and described
8% of variance of the time taken to tap a circle (Marдinal R2 = 0.08, Conditional R2 = 0.27). Participants took
significantly less time to tap a circle in both indoor and outdoor noise conditions, with the stronger effect of
urban outdoor noise. Wilcoxon signed-rank test did not show a significant difference between the indoor and
outdoor noise conditions for time taken to tap circle (V = 1.26e+06, p = 0.81). We visualised mean values for the
time taken to tap a circle per condition in Figure 4. Table 3 shows that older participants required more time to
tap a circle, similar to our observation in the music conditions. Furthermore, we show that the further from the
top left corner the target is, the longer the target acquisition time is.

Table 3. Effects of model factors on predicting time taken to tap a circle in urban noise condition

Estimate Std. Error t value Pr (>|t|)

(Intercept) 4.68e+02 4.03e+01 11.61 6.42e-11 ***
Condition (Indoor noise) -7.89 3.09 -2.55 0.011 *
Condition (Outdoor noise) -19.4 3.12 -6.21 5.65e-10 ***
Y centre coordinate 6.33e-03 2.37e-03 2.67 0.007 **
Age 3.85 1.22 3.14 0.005 **

Significance: ‘***’ <0.001, ‘**’ <0.01, ‘*’ <0.05

Fig. 4. Mean values for time taken to hit a circle per condition

We then built a model to predict the offset size. The final model contained the X centre coordinate of a circle
as its only predictor. The direction of the predictor is negative, indicating that the closer to the right edge of the
screen the circle is located, the smaller the offset of the touch is. The model was statistically significant (χ 2(1) =
33.77, p < 0.01) describing 0.5% of variance of the offset size (Marдinal R2 = 0.005, Conditional R2 = 0.07).
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4.2.2 Visual Search. To check the effect of the urban noise conditions on performance during icon search
task, we built a model to predict the time taken to memorise an icon. The final model contained two predictors:
condition and participant age. The model was significant (χ 2(3) = 21.33, p < 0.01) and described 8% of variance
of time taken to memorise an icon (Marдinal R2 = 0.08, Conditional R2 = 0.22). The coefficients of the predictors
are summarised in Table 4. From the table, we observe that participants spent significantly less time memorising
an icon in the urban indoor noise condition compared to the silent condition. However, the effect of urban outdoor
condition did not significantly affect the time taken to memorise an icon. Mean values for time taken to memorise
an icon per condition can be found in Figure 5.

Table 4. Effects of model factors on predicting time taken to memorise an icon in urban noise condition

Estimate Std. Error t value Pr (>|t|)

(Intercept) 510.38 69.36 7.36 2.01e-07 ***
Condition (Indoor noise) -36.48 12.33 -2.96 0.003 **
Condition (Outdoor noise) -5.18 12.32 -0.42 0.67
Age 7.55 2.10 3.593 0.002 **

Significance: ‘***’ <0.001, ‘**’ <0.01, ‘*’ <0.05

Fig. 5. Mean values for time taken to memorise an icon per condition

Next, we built a model to describe the total time taken to find an icon in the urban noise conditions. The final
model contained the X centre coordinate of the icon as its only predictor. The predictor was again negative,
indicating that the icons were quicker to find the closer they were located to the right edge of the screen. The
model was statistically significant (χ 2(1) = 9.32, p < 0.01) and described 0.5% of variance of time taken to find
an icon (Marдinal R2 = 0.005, Conditional R2 = 0.09).
Finally, we built a model to describe the number of errors made by participants in the finding an icon task.

The model was described with three predictors; condition and both the X and Y centre coordinates of the icons.
The model was statistically significant (χ 2(4) = 16.45, p < 0.01) and explained 1% of variance of the number of
errors participants performed during icon search task (Marдinal R2 = 0.01, Conditional R2 = 0.04). The model is
summarised in Table 5.
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Table 5. Effects of model factors on predicting errors in finding an icon in urban noise condition

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.89e-02 1.63e-02 1.16 0.25
Condition (Indoor noise) 6.44e-03 1.19e-02 0.54 0.59
Condition (Outdoor noise) 2.60e-02 1.19e-02 2.18 0.03 *
X centre coordinate -4.42e-05 1.71e-05 -2.59 <0.01 **
Y centre coordinate 2.08e-05 9.90e-06 2.10 0.04 *

Significance: ‘***’ <0.001, ‘**’ <0.01, ‘*’ <0.05

The mean values for the number of errors in the icon search task are visualised in Figure 6. According to our
findings, participants were significantly less accurate in the urban outdoor noise condition when compared to
silent condition. The effect of X and Y centre coordinates is again in line with our previous findings.

Fig. 6. Mean values for errors in find an icon task per condition

4.2.3 Text Entry. We then built a model describing the time required per character entry. The final prediction
model contained both condition and gender as predictive variables. The model was statistically significant
(χ 2(3) = 10.79, p = 0.01) and explained 14% of variance of the time per character entry participants spent during
the typing task (Marдinal R2 = 0.14, Conditional R2 = 0.49). We presented the summarised model in Table 6. We
then visualised the values of the mean time per character entry in a boxplot in Figure 7. Finally, we built a model
to predict the number of errors made by participants during the typing task. None of the included predictors
sufficiently describe this variable.

Table 6. Effects of model factors on predicting time per character entry in a typing task in urban noise condition

Estimate Std. Error t value Pr(>|t|)
(Intercept) 376.59 47.16 7.99 5.17e-09 ***
Condition (Indoor noise) 26.57 32.67 0.81 0.42
Condition (Outdoor noise) 69.50 32.67 2.13 0.04 *
Gender (M) 155.59 61.13 2.55 0.02 *
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Fig. 7. Mean values for time per character entry in urban noise condition

4.3 Results: Speech Condition
4.3.1 Target Acquisition. First, we built a model to describe the time taken to tap a circle. The final model

contained the Y centre coordinate of the circle and participant age as its predictors. The relationship of the Y
centre coordinate was positive, indicating that the lower the circle was from the top left corner of the screen, the
quicker it was to tap. For age, we see again the same trend: young participants were quicker in tapping the circles.
The model was statistically significant (χ 2(1) = 105.39, p < 0.01) describing 7.6% of variance of time taken to tap
a circle (Marдinal R2 = 0.08, Conditional R2 = 0.26).
We then built a model to describe the offset size of the touch. The final model contained only the X centre

coordinate of the circle as a factor. As before, the predictor was negative, indicating that the icons were quicker to
find the closer they were located to the right edge of the screen. The model was statistically significant (χ 2(1) =
41.85, p < 0.01) and described 0.6% of the variance of the offset size (Marдinal R2 = 0.006, Conditional R2 = 0.06).

4.3.2 Visual Search. We created a model to describe the time taken to memorise an icon. The final model
contained only participant age as a predictor, again in the same direction - indicating that young participants
were quicker to find the icons. The model was statistically significant (χ 2(6) = 12.31, p < 0.01) and explained 7%
of variance of time taken to memorise an icon (Marдinal R2 = 0.07, Conditional R2 = 0.17).
Finally, we construct a model to describe the time taken to find an icon and the corresponding number of

errors. However, none of the predictors sufficiently described this dependent variable.

4.3.3 Text Entry. To investigate the effect of speech condition on a typing task, we built a model describing
the time needed per character entry. The model was statistically significant (χ 2(3) = 9.30,p < 0.03) and described
9% of variance of time taken to type a character (Marдinal R2 = 0.09, Conditional R2 = 0.40). Coefficients of
the model are summarised in Table 7. As can been seen from Table 7, participants were significantly slower
when typing a character under meaningful speech condition, compared to silent condition. We drew a boxplot to
visualise the values of the mean time per character entry for each condition in Figure 8.

We then built a model describing the number of uncorrected errors in a typing task. However, none of the
predictors were descriptive enough to predict the number of uncorrected errors during the typing task under the
speech condition.
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Table 7. Effects of model factors on predicting time per character entry in speech condition

Estimate Std. Error t value Pr(>|t|)
(Intercept) 396.01 47.56 8.33 1.12e-09 ***
Condition (Speech meaningful) 85.44 36.53 2.34 0.02 *
Condition (Speech meaningless) 53.09 36.76.20 1.44 0.15
Gender (M) 116.75 60.31 1.94 0.07

Significance: ‘***’ <0.001, ‘**’ <0.01, ‘*’ <0.05

Fig. 8. Time per character entry in speech condition

4.4 Results: Interviews
The qualitative analysis presented in this section reflects on participants’ answers to the short interview session
that we held after they finished the experiment. Several participants (4 out of 24) mentioned that they felt
their “overall performance was worse towards the end of the experiment”. In contrast to this opinion, 3 out of 24
participants mentioned that their performance was better towards the end of the experiment as they were “more
used to the tasks”.

4.4.1 Perceived Task Performance in Music Condition. Participants felt the effect of music was most prominent
in the tapping task. 12 out of 24 participants claimed that they followed the tempo of the music when tapping
circles. The most popular comment we received from the participants was "I was tapping circles in rhythm with
the music tempo". Some of the participants thought that the music improved their performance: “Classical music
improved my performance” (P24), “I was performing better in finding icons under both music conditions” (P21).
Interestingly, participants mentioned that in both of the music conditions they tapped on circles faster when
compared to the silent condition: “I was fast in both music conditions. But even with the slow music I was performing
faster than in silence” (P14, P20, P24). The participants also mentioned that the music made their task completion
experience more enjoyable: “Music made the task easier psychologically, I was not stressed or worried” (P01), “Slow
music was relaxing” (P06), “Clicking the circles was fun with the music” (P14), “I was enjoying the music and focused
on the task better” (P24). Overall, interview remarks demonstrate that the participants noticed the influence of
music tempo on completing target acquisition task. However, there were exclusive remarks from our participants
who believed that music was annoying and distracting (P08, P10, P17) and, hence, might have deteriorated their
performance: “Slow music was annoying and distracting. I could not concentrate on finding an icon and was slower
when typing a message” (P10). However, upon checking the quantitative data we found that mean time taken to
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find an icon on the visual search task during the slow music condition for participants P08 (M = 1166.21 ms, SD
= 257.99) and P17 (M = 1359.12 ms, SD = 462.27) was less than the mean time for all participants (M = 1753.19
ms, SD = 1166.21). Only participant P10 took longer time finding an icon under the slow music condition (M =
1860.92 ms, SD = 1098.26) compared to the total mean time for the visual search task. We also found that all three
participants took less time per character entry in the text entry task (M = 431.56 ms, SD = 59.26; M = 379. 44 ms,
SD = 67.38; and M = 424.65 ms, SD = 72.02 for participants P08, P10, P17 respectively) compared to the mean time
of all participants (M = 485.14 ms, SD = 192.48). This shows that participants’ perception does not always align
with their actual performance.

4.4.2 Perceived Task Performance in Urban Noise Condition. There was a lack of consensus in the remarks
regarding the urban noise condition. More than half of the participants agreed that they were annoyed and
distracted with the urban outdoor noise (13 out of 24). Several participants mentioned that both urban noise
conditions were distracting. Five participants complained about the outdoor urban noise condition: “In urban
outdoor noise I was stressed and alert. I had to correct the texts a lot under outdoor urban noise condition” (P01),
“Urban outdoor noise was distracting” (P11, P14, P19), “I made several mistakes when finding icons in outdoor noise
condition” (P19). One participant mentioned that they performed quicker in all of the tasks during the outdoor
noise as they tried to “tune out the noise” (P06). Meanwhile other participants complained about urban indoor
noise condition: “Ambient indoor noise was distracting, as it made feel like I was in a cafe and I felt as if I needed
to be involved in a conversation with a friend” (P06), “Indoor noise put me almost asleep” (P13). Surprisingly, one
participant claimed that they liked the urban outdoor noise condition and it did not affect their performance:
“Traffic noise was good, I am used to it, I was quicker in tapping circles and typing tasks.” (P13). These comments
are mostly in line with our quantitative findings, as our results show that participants took less time in tapping
circles and memorising an icon under both indoor and outdoor urban conditions. However, time per character
entry was higher for these conditions.

4.4.3 Perceived Task Performance in Speech Condition. Regarding the speech condition, 13 out of 24 participants
found the speech condition to be distracting and claimed their overall task performance was worse in both
of the speech conditions. The participants emphasised that speech condition deteriorated their performance
particularly in visual search and text entry tasks. Some of the insights from the participants are: “English speech
was distracting. When listening to it I made more mistakes while typing” (P13, P14, P17, P22, P23), “I made several
mistakes when finding icons in English speech condition” (P19). Regarding the target acquisition task only a few
participants felt that speech affected their performance. For example, one participant said that they were slower in
tapping circles under English speech condition but could not explain the reason behind (P01). However, another
participant mentioned that they tapped on circles quicker to avoid "listening to the foreign language" (P06). When
we examined their data, we found that P01 did in fact take less time (M = 574.42 ms, SD = 112.69) tapping circles
in English speech condition compared to the mean time of all participants (M = 592.81 ms, SD = 119.60). The
quantitative data of the participant P06 is in line with their comment, as they took less time tapping circles (M =
542.75 ms, SD = 117.19) compared to the total mean time taken to tap a circle (M = 609.38, SD = 132.66). Overall,
the participants claimed that the speech condition affected their performance in visual search and text entry
tasks.

4.5 Summary of Results
We summarise the effects of each condition on the different dependent variables and present them in Table 8.
As can been seen from the table, the target acquisition time decreased in both music conditions, as well as in
both urban noise conditions. Offset size was significantly larger in the music with slow tempo condition. Further,
participants spent significantly less time on memorising an icon in the urban indoor noise condition. In addition,
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participants produced significantly more errors in urban outdoor noise condition when searching for an icon.
Finally, the time per character entry was significantly longer in the urban outdoor noise and meaningful speech
conditions when compared to the silent condition.

Table 8. Table summarising the effect of ambient noise conditions on predicted variables compared to silent condition

Music Urban noise Speech
Slow Tempo Fast Tempo Indoor Outdoor Meaningful Meaningless

Time to tap
a circle ↓ * ↓ * ↓ * ↓ * - -

Offset size ↑ * ↑ - - - -

Time to memorise
an icon

- - ↓ * ↓ - -

Time to find
an icon

- - - -

Errors in
icon search

↑ ↑ *

Time per character
entry

↑ ↑ * ↑ * ↑

Errors in
typing

- -

‘↓’ — decreased, ‘↑’ — increased (relative to baseline)
‘*’ — the effect was statistically significant, ‘-’ — no effect was observed

Empty cells indicate a failed attempt to describe the variable with provided factors

4.6 Comparison of Cold- and Ambient Noise-Induced Situational Impairments
In this section we compare our findings to the effect of cold ambience on mobile interaction. We compare our
mean values for time taken to tap a circle, offset size of the tap, time taken to memorise an icon, and the time
taken to find an icon with the values presented in Sarsenbayeva et al. [45] and summarise them in Table 9. The
comparison suggests that the effect of cold was more pronounced than all our ambient noise conditions in terms
of the time taken to memorise an icon and time taken to find an icon. The effect of cold on offset size was similar
for the fast tempo music, slow tempo music and meaningful speech conditions (approx. 43 pixels). In terms of
time to tap a circle, the effect of cold was larger than the conditions of fast tempo music, slow tempo music,
urban indoor noise, urban outdoor noise, and meaningful speech conditions, except for the meaningless speech
condition. The mean values for the silent condition are slightly smaller for offset size, time to memorise an icon,
and time to find an icon compared to the warm condition. Meanwhile, the time to tap a circle is approximately
equal for both of the baseline conditions.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 2, Article 82. Publication date: June 2018.



82:18 • Z. Sarsenbayeva et al.

Table 9. Comparison of the effect of situational impairments against the baseline

Baseline Situational impairments

Mean (SD) Warm Silent Cold Music
Fast

Music
Slow

Urban
Indoor

Urban
Outdoor

Speech
(Meaning-

ful)

Speech
(Meaning-

less)
Time to tap
a circle, ms

593
(137.89)

591.84
(125.07)

603
(144.62)

577.76
(135.85)

574.15
(123.45)

583.16
(117.38)

573.56
(110.39)

592.81
(119.60)

609.38
(132.66)

Offset
size, px

41.34
(40.89)

39.38
(35.26)

42.66
(33.04)

42.95
(29.72)

42.11
(37.48)

41.06
(32.70)

40.91
(38.47)

42.90
(49.86)

39.47
(30.55)

Time to
memorise
an icon, ms

815
(150.15)

748.76
(253.89)

854
(196.47)

737.71
(233.54)

745.15
(294.29)

712.11
(194.40)

743.56
(253.03)

753.20
(319.57)

738.90
(254.39)

Time to
find an
icon, ms

1632.24
(1235.27)

1587.74
(871.95)

1942.46
(2750.85)

1564.70
(830.81)

1753.19
(2263.27)

1543.12
(700.54)

1633.15
(1191.98)

1637.54
(1072.61

1520.99
(767.07)

5 DISCUSSION

5.1 Effect of Ambient Noise on Smartphone Interaction
A large body of scientific work highlights the effect of ambient noise on human behaviour [22, 39], cognitive
performance [5, 44, 54], and emotional state [25]. Our findings show that participants were quicker in the target
acquisition task in both of the fast and slow music conditions. Our results are partly in line with the literature, as
it has been shown that fast tempo music accelerates human performance in drinking [33], eating [9], or walking
[34]. However, previous work has not identified a positive effect of slow tempo music on performance. In our
qualitative data, participants mentioned that music in general helped them get into the rhythm of the task, which
can explain why both music conditions led to a decrease in time taken to tap a circle. However, a faster completion
of the task also resulted in a larger offset size. This agrees with previous work that demonstrated that while
music increases the task performance speed, it also reduces overall accuracy [12]. As for the remaining tasks
(visual search and text entry), we did not observe an effect of music on performance.

Another important factor to consider is that, even though literature has identified tempo as the main factor
influencing human performance when listening to music [34], different types of music (e.g., vocal music, rock)
can also have a different effect on mobile interaction. For instance, Wen et al. demonstrated that performance in
recall is significantly higher under classical music in contrast to rock music [55]. In our study, we manipulated
the tempo of a classical music piece. While both slow and fast tempo classical music affected performance in a
similar way, further research is needed to investigate the effect of a multitude of different music genres, a wider
tempo range, and other musical elements such as pitch and timbre on mobile interaction.

Our results demonstrate an overall positive trend regarding the effect of urban noise on the target acquisition
time and the time taken to memorise an icon. However, urban noise was negatively perceived by participants,
with many participants commenting on its distracting nature. As such, there was an incentive for participants
to perform quicker in these two tasks in order to reduce time spent in this unpleasant condition. However,
in a real-world scenario a user would not be able to “escape” these unpleasant background noises by simply
completing a task on their mobile device. Moreover, under the urban outdoor noise condition, participants made
significantly more errors when finding an icon and took longer to type each character. These results are in line
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with the findings presented in previous work [5, 22] and show the negative effect of urban noise as reported by
participants in the interviews.

The effect of speech was limited to the text entry task. Our findings show that participants took significantly
longer to type a text when listening to meaningful speech. These results correspond with previous work where
meaningful speech was shown to have a negative effect on cognitive performance [4, 27, 50, 54]. Participants
mentioned that they were listening to the English speech (meaningful), which resulted in longer completion
times when typing a text. The effect of meaningless speech was much smaller. As participants did not understand
the Kazakh speech (meaningless), it was likely easier for participants to ignore the spoken text.

It is important to note that factors outside the ambient noise conditions also affected participants’ performance
during the tasks. For example, in the target acquisition task, the Y centre coordinate of the circle played a significant
role for predicting the time to tap a circle. Furthermore, the X centre coordinate of the circle significantly affected
the offset size of the tap. The offset size of touch was smaller for the targets located closer to the right edge
of the screen. These findings are in line with previous work which showed that screen coordinates have a
significant effect on time to tap as well as tap accuracy [20, 45]. Another common factor influencing results was
age, influencing performance for time taken to tap a circle, to memorise an icon, and to find an icon. This is in
line with previous work which shows that age is an important factor affecting both memory and errors during
time based tasks [42].

5.2 Contrasting Situational Impairments in Mobile Interaction
In addition to ambient noise, cold ambience has been identified as a situational impairment that can affect mobile
interaction. By comparing these situational impairments to each other, we were able to establish a benchmark
measurement and determine what strategy should be prioritised and in which situations. To allow for a fair
comparison between previously reported situational impairments, we used the same target acquisition and visual
search tasks as presented in Sarsenbayeva et al. [45]. We then compared the results of our participants against
the results obtained by those authors, in which participants were exposed to cold as a source of situational
impairment.
Our results show that the mean values for time taken to tap a circle, memorise an icon and find an icon

were larger in a cold environment compared to the ambient noise conditions. Cold ambience affects people
physiologically [7], with a decrease in body temperature when exposed to cold — albeit at different rates per
individual. As a result, the cold affects the dexterity of the fingers and leads to deteriorated fine-motor performance.
Our comparison shows that the effect of ambient noise is more nuanced. Some people are more accustomed
to certain types of noise than others, and the effect of these noises can be in opposite directions between
people. For instance, people with a certain preference in music might be less tolerant to other types of music.
These preferential differences between people cause the effect of noise to be less homogeneous than situational
impairments that affect everyone similarly (cold reduces our body temperature).

Previous work has highlighted the need for accumulated knowledge in the HCI/UbiComp community [30, 31].
Liu et al. [31] argue that accumulated knowledge contributes to the formation of important research themes
in the field. In our work we have obtained new results that are directly comparable to a previous study, and
therefore allow us to benchmark mobile interaction under different situational impairments.

5.3 Detecting and Accounting for Noise-Induced Situational Impairments
Our findings demonstrate that mobile interaction can be affected by ambient noise in certain situations. Previous
work has argued that detecting situational impairments is a fundamental step towards the successful adaptation
of mobile interfaces [46]. The automatic detection of situational impairments during mobile interaction opens
the way to appropriate interface adaptations; thus, enabling the interaction with mobile devices to be more
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appropriate to the user’s context. Furthermore, solutions should ideally leverage the built-in sensors of the mobile
device [47] as opposed to requiring additional instrumentation (e.g., external temperature and humidity sensors
to receive climatic parameters [1]). Following this suggestion, we argue that the built-in microphone of mobile
devices can be used to detect noise-induced situational impairments, as previously suggested by Kanjo et al. [27].
In addition, a classifier could be used to distinguish between different noise types, as our results show that they
can have different effects. Smartphone interfaces would then accommodate accordingly based on the condition
detected. For example, if exposure to urban noise or speech is detected (shown to adversely affect text entry) while
a user is typing, the phone can present an alternative interface to mitigate the effect of potential noise-induced
situational impairments (e.g., "WalkType" interface by Goel et al. [14], "Fat thumb" technique by Boring et al. [8]).

5.4 Limitations
Our study had several limitations. First, the study settings were strictly controlled. It is possible that in a naturalistic
environment ambient noise types would be more diverse, and multiple noise types could occur simultaneously
(e.g., urban outdoor noise might contain music in a touristic part of the city). However, controlling for individual
noise types was necessary as our goal was to systematically compare the effect of specific ambient noises on
performance. Second, we were limited in the number of sounds included and did not include other types of music
(e.g., varying music genres, music with lyrics), urban noise (e.g., markets, public performances), or speech (e.g.,
second language of the participant). These are potential research directions that can be explored in future studies.
We also did not run our study under different volume levels, but kept the noise level constant at between 55-60
dB to avoid participant discomfort.
Finally, we restricted our participants to use only their index finger to interact with the smartphone. We

argue that this restriction was necessary to draw a fair comparison between the effect of ambient noise and cold
ambience [45]. Moreover, by restricting the interaction technique we created a more comparable setting between
participants.

6 CONCLUSION
In this study we investigate the effect of ambient noise on mobile interaction performance in target acquisition,
visual search, and text entry tasks. We found that participants were significantly quicker in completing the
target acquisition task in music conditions (both fast and slow) compared to the silent condition. However, they
were significantly less accurate while listening to slow music. During the visual search task, participants took
significantly less time to memorise an icon while listening to urban noise, but made more errors when finding an
icon under urban outdoor noise. Participant performance during the text entry task was significantly affected by
the urban outdoor noise and meaningful speech conditions. The comparison of cold-induced and noise-induced
situational impairments on mobile interaction showed that the effect of cold ambience was more prominent
on tasks requiring fine-motor movements, whereas the effect of ambient noise was more prominent on tasks
requiring cognitive skills. Our findings enhance the understanding of noise-induced situational impairments
on mobile interaction and contribute towards accumulating knowledge in situational impairments research.
Furthermore, detection of ambient noise and noise-induced situational impairments may be used for sensing user
context and adapting the interface accordingly to mitigate their effect on mobile interaction.
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Chapter 5

Quantifying the Effects of Stress on
Mobile Interaction

In this chapter we quantify the effect of an internal contextual factor – stress –
on mobile interaction. Stress is defined as a mental state often experienced on
a regular basis that has been shown to negatively influence people’s everyday
activities [104, 126, 205]. As the nature of some stressors is temporal [145, 251]
and caused by a specific situation (e.g., work related, family related) [128], in this
work we study the effects of stress on mobile interaction from the perspective of
SIIDs. Despite the acknowledged negative effects of stress on human cognitive
performance (e.g., impaired working [146,281] and declarative memory [122,178]),
its’ effect on mobile interaction has yet to be explored.

We induce stress on our participants using the Trier Social Stress Test [121]
– a protocol commonly used in Psychology research to induce stress. Stress
was induced in two steps: first, the participants delivered a five-minute speech
explaining why they are the best candidate for their dream job. Then the partic-
ipants had to perform consecutive mathematical subtraction. Both of the tasks
were performed in front of the panel of judges composed by our research con-
federates. We asked our participants to complete smartphone tasks upon their
arrival (baseline measurements) and under the induced stress. We validated the
occurrence of stress using HRV data, derived from physiological data collected
with an Empatica E4 [57] wearable sensor. In addition, we also used State-Trait
Anxiety Inventory [250] self-report questionnaire to validate the presence of stress
in participants.

Our findings show that stress significantly affected participants’ performance
in the target acquisition and visual search tasks; however, our results did not
provide any evidence on the effect of stress on the text entry task. Precisely, our
participants took significantly less time to complete the tap on the targets when
they were stressed.

Moreover, their tapping accuracy was significantly lower when they were
stressed as compared to the baseline condition. Regarding, the visual search task,
our results indicate that participants were significantly faster to memorise icons
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when they were stressed. These findings are in line with prior research showing
that people rush to complete the tasks to “escape” the anxiety and discomfort
caused by stress [163].

The results of this study enhance our understanding of the effects of stress on
mobile interaction and contribute to accumulation of knowledge on the SIIDs
research. The details of our approach can be found in the attached publication in
Section 5.1.
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1 INTRODUCTION
Due to the ubiquitous nature of smartphones, users interact with them under varying environmental (e.g., in
noisy environments) and internal (e.g., under stress, in different moods) conditions. Previous research has shown
that environmental and contextual factors, such as cold ambience [12], ambient noise [44], encumbrance [38],
and walking [11] negatively affect mobile interaction and lead to situational impairments. This has given rise to a
growing body of work in HCI that aims to enable smartphones to detect when the user is situationally impaired and
subsequently adapt the interface to mitigate the effects of such impairments during mobile interaction [43, 46, 57].
Although prior research has emphasised the importance of understanding the effects of situational impair-

ments [43, 49, 63], these studies mostly focus on environmental factors, such as cold ambience. In contrast,
relatively little work has investigated the effect of an important internal factor on mobile interaction: stress, a
mental state often experienced on a daily basis [1], which has been shown to negatively impact performance in
everyday activities (e.g., [16, 22, 39]).
In this paper, we investigate the effect of stress on task performance in smartphones. According to Lazarus

et al. [23], stress can be defined in terms of the relationship between an individual and an environment or
situation [51]. Given this notion [23] and the temporal effect of certain stressors (personal or work-related) on
human behaviour [26, 55], stress has been identified as a potential cause of situational impairment that is likely
to have an impact during mobile interaction [43].
In our study, we use the Trier Social Stress Test (TSST) [20] to induce stress in our participants in order to

measure its effect on three mobile interaction tasks: target acquisition, visual search, and text entry [44]. We
show that stress significantly reduces target access time and accuracy during target acquisition tasks compared to
the baseline, as well as completion time during visual search tasks. Further, we directly contrast the magnitude of
stress-induced situational impairments to other situational impairments based on results in the literature, namely
cold ambience [42] and ambient noise [44].

The main contributions of this paper are to quantify the effect of stress on mobile task performance, compare
its effect size to that of cold- and noise-induced situational impairments, and, hence, to contribute to the growing
body of research on situational impairments.

2 RELATED WORK
Previous work has highlighted that different environmental and contextual factors, such as cold ambience [12],
ambient noise [44], mobile state of the user [11], and encumbrance [38] can negatively affect mobile interaction.
These factors can cause users to experience situational impairments and, thereby, impact their performance during
mobile interaction [43]. For example, cold ambient temperature has been shown to adversely affect smartphone
input performance [12, 42]. In particular, throughput and accuracy drop significantly when performing acquisition
tasks under cold temperatures. Other studies have shown a negative effect of walking on text entry [11, 35] and
target acquisition tasks [48]. User encumbrance also negatively affects mobile interaction, resulting in decreased
accuracy, longer target acquisition times, and increased error rate [38].
Sarsenbayeva et al. [44] measured the effect of background noise on smartphone interaction performance.

The types of background noise presented in that study included music with fast and slow tempo, urban indoor
and outdoor noise, and meaningful and meaningless speech. Similar to our study, mobile input performance
was measured in terms of three common smartphone activities: target acquisition, visual search, and text entry.
Performance under ambient noise conditions was benchmarked against the silent condition. The authors found
that music reduced completion time during target acquisition tasks, while urban noise and speech increased
the text entry rate. Although a number of previous studies have investigated the effect of stress on interaction
with stationary technology (e.g., keyboard and mouse), the effect of stress on mobile interaction remains under-
explored. For example, Karunaratne et al. [18] reported stronger keyboard taps amongst participants exposed to
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stressful conditions. Furthermore, Rodrigues et al. [40] investigated the effect of stress on mouse movements. The
authors found that stressed students, when presented with challenging questions, carried out significantly more
mouse movements [40].
In our study, we contribute to the growing body of research on situational impairments [43] by quantifying

the effect of stress on interaction with smartphones, an internal factor that has been shown to adversely impact
performance when using other technologies, such as desktop computers [18, 40, 62]. We achieve this by using
the TSST protocol [20] to induce stress in our participants, and measure changes to their performance while
completing typical smartphone tasks.

2.1 Cognitive and Physiological Effects of Stress
Behavioural and psychological scientists study the effect of stress on humans’ daily lives for a variety of reasons.
For example, researchers have aimed to identify the events leading to stress and how negative outcomes of
cumulative stress can be avoided [14].
Early work, showed a curvilinear relationship between arousal and task performance, particularly with very

high and very low levels of arousal inhibiting task performance, whereas moderate levels facilitate it [65]. More
recently, research has shown the negative effect of stress on human cognitive performance [67]. For example,
stress negatively affects working memory [27, 67] and verbal declarative memory [21, 37]. In addition, studies by
Payne et al. [39] and Jelici et al. [16] report adverse effects of stress on human cognition resulting in memory
impairments. Lupien et al. [26] also show that under stressful conditions, declarative memory is significantly
impaired compared to a non-stressful condition in a word-pairs recall task. Moreover, Kuhlmann et al. [22] show
that acute stress significantly delays memory retrieval. They utilise the TSST, a widely used protocol for inducing
stress in participants through two tasks: public speaking and arithmetic subtraction [20]. They then asked their
participants to recall pairs of words memorised at the beginning of the experiment. The results of this study show
that stressed participants have significantly reduced memory retrieval as compared to the control condition [22].
Wolkowitz et al. [64] report similar results showing that stress has a detrimental effect when recalling words
from a previously learnt list.

Further, Marquart [29] observed that stress decreased participants’ learning ability and results in non-adaptive
behaviour (e.g., longer reaction time when completing cognitive tasks [23]). Verville et al. [61] found that
participants who were exposed to a stressful condition required significantly longer time for recognising pictures
that were flashed on a screen as compared to a control group. This, however, is a contested finding as other
studies have shown that stress sped up participants’ performance during an image sorting task (e.g., [33]). In
addition, a reduction of task completion time resulted in a greater number of errors [33]. These results are similar
to a study by McKinney [32], where stress increased the number of errors in completing multiplication problems
and a learning syllables task.

Based on this rich literature we hypothesise that stress will hinder user performance in smartphone tasks. In
particular, participants under stress will be less accurate when compared to a baseline measurement.

2.2 Stress Detection Methods
Stress induces biological responses, which can thus be physiologically measured. Examples include changes in
skin conductivity [50], heart rate variability [56], muscle tension [56], and heart rate [47]. Several studies have
focused on the development of wearable technology that allows for the unobtrusive tracking of physiological
measures. As a result, a variety of wearables exists that track physiological measures (e.g., Empatica E4 wristband1,
Oura ring2).

1https://www.empatica.com/research/e4/
2https://ouraring.com/
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Several studies have attempted to detect stress from people’s interaction behaviour using sensor-based tech-
nologies [3, 14, 41]. For example, Hernandez et al. use a pressure-sensitive keyboard and a capacitive mouse
to detect the effect of stress during computer interaction. They found that more than half of their participants
increased their typing pressure under the stressful condition when compared to the control condition. They
also showed that the majority of participants (75%) covered more of the surface of the mouse when they were
stressed [14]. Furthermore, Exposito et al. [10] suggest using iPhone’s built-in keyboard pressure sensor to detect
stress. The authors show that under stressed conditions, participants typing pressure was higher when compared
to non-stressed conditions [10]. Prior research has also shown that the combination of wearable sensors and
smartphone interaction patterns can detect stress more accurately. For instance, Sano and Picard [41] achieved a
higher accuracy rate for stress detection (75%) compared to previous results (53%) that only used smartphone
interaction patterns [3]. Other stress detection methods are based on self-reports and questionnaires. For ex-
ample, Cohen et al. [9] suggest the use of perceived stress as an objective stress measure. Further, Spielberger
and colleagues recommend asking participants to self-report their anxiety levels using the State-Trait Anxiety
Inventory (STAI) to identify the occurrence of stress [54].

In our study, we collect both sensor and self-report data to validate that we are indeed inducing stress in our
participants throughout the experiment. Namely, we use heart rate variability (HRV) derived from the data of an
Empatica E4 and collect self-report data using the STAI questionnaire.

3 METHOD
In this study, we investigate the effect of stress on performance on three common mobile interaction tasks: target
acquisition, visual search, and text entry. We use the experimental tasks developed in the study by Sarsenbayeva
et al. [44]. This allows us to directly compare the effects of stress-induced situational impairments with those
previously reported for cold-induced and noise-induced situational impairments. We describe each task in detail
below.

3.1 Smartphone Tasks
We used a Samsung Galaxy S7 smartphone (Android 7.0) with a 5.1-inch screen (1080×1920px) in this experiment.
This smartphone model was chosen in order to have an identical screen size and screen resolution to the
smartphone used in previous studies by Sarsenbayeva et al. [42, 44] on situational impairments. The three tasks
were presented to participants in a random order to avoid sequence effects. Participants first completed extensive
training until they were comfortable with each of the presented tasks, thus minimising any potential learning
effects. Both the training and actual tasks were completed while standing, and participants were instructed
to use only the index finger of their dominant hand for interaction, while holding the smartphone with their
non-dominant hand.

3.1.1 Target Acquisition Task. In the target acquisition task participants are asked to tap circular targets (radius
= 135 px) which appear one at a time at random locations on the screen. Each circle has an indicated centre and
participants are asked to tap the indicated center of the targets as precisely and quickly as possible. We log the
coordinates of the target’s centre, the participant’s touch point, and the elapsed time. The interface of the task is
shown in Figure 1-A.

3.1.2 Visual Search Task. In the visual search task, participants must find a target icon amongst 24 other icons
(100× 100 px), arranged according to a 4× 6 grid [13]. The target icon is first shown, participants can then take as
much time as needed to memorise it (Figure 1-B). In the subsequent screen they must find and tap the memorised
target among 24 icons (Figure 1-C). To minimise any potential learning effects, the application ensures that the
target is randomly selected and remaining icons are randomly distributed across the grid.
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Fig. 1. Interface of the application with Target Acquisition Task (A), Visual Search Task (B-C), and Text Entry Task with
user’s input for easy and difficult texts (D-E).

3.1.3 Text Entry Task. In the text entry task, our participants are presented with a snippet of text (displayed on
the top-half of the screen), which they must re-type in a text box. The texts are of varying difficulty: 1) easy –
consisting of only one sentence with common words widely used on a daily basis (see Figure 1-D), 2) difficult
– consisting of several sentences chosen from Shakespeare’s sonnets (see Figure 1-E). In total we have 10 easy
sentences and 10 difficult sentences, and at each round of tasks a sentence is randomly selected by the application.
We validated the difficulty of the sentences with the Flesch-Kincaid readability test [19]. Easy sentences had an
average grade of 1.6 and difficult sentences had an average grade of 5.1.

3.2 Participants
We recruited 24 participants between 20 and 55 (M = 31, SD = 9.5) years old through our university’s mailing
lists and snowball recruitment with equal number of male and female participants to avoid gender bias [59].
Participants had a diverse range of educational backgrounds (e.g., Electrical, Mechanical, Infrastructure and Civil
Engineering, Agriculture, Entomology, Architecture, and Computer Science).

3.3 Procedure
To induce stress in our participants, we followed the TSST protocol [20]. TSST is a validated protocol used
to induce stress in study participants that has been widely used in Psychology research. The original TSST
protocol [20] describes three main stress points in the experiment: following a relaxation period (20 minutes),
following stress-inducing tasks (speech and arithmetic), and following post-stress recovery. Hence, we ask
participants to complete the smartphone tasks at these three points. The overview of the experimental procedure
is presented in Figure 2.
In order to validate whether our participants experienced stress throughout the experiment, we calculated

their heart rate variability (HRV) from the Empatica E4 wristband data, as HRV has been shown to correlate
with a person’s stress levels [56]. We also collected self-reported anxiety levels of the participants via the STAI
questionnaire [54], a tool commonly used by researchers conducting studies with the TSST to validate fluctuations
in stress levels. Sensor data was then cross-referenced with smartphone data using timestamps.

In line with the TSST protocol, participants were not aware that the study investigated the effect of stress on
mobile interaction, and were not informed that we would induce stress on them to avoid triggering anxiety-related
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Fig. 2. Experimental Procedure.

behaviours. Again, according to the TSST protocol, this is done to reduce participant bias and to let us observe
the natural reaction of participants to stress. The experimental design was approved by the Ethics Committee
of our university. The experiment duration was approximately 90 minutes per participant, including briefing,
training, data collection, and final interview. Each participant received a $30 gift voucher for participation.

3.3.1 Participant Briefing. The experiment took place at our institution’s usability lab, with an experimental setup
consisting of two adjacent rooms, as recommended by the TSST protocol. One room works as a desensitisation
room, where participants can rest and relax, while the other room is used for the stress-inducing tasks. Upon arrival,
we welcomed our participants to the desensitisation room. We then informed them that we are investigating their
cognitive performance as measured by their presentation skills and arithmetic skills, as well as their performance
in a range of smartphone tasks. We then asked participants to sign a consent form agreeing to participate in the
study and collected their demographic data (age, gender, background, dominant hand). Next, we instrumented
our participants with an Empatica E4 wristband, and instructed them to wear it throughout the experiment on
their non-dominant hand. Following this setup we asked our participants to complete all smartphone tasks for
training purposes. Participants trained with all three study tasks in random order until they were comfortable
with each one.

3.3.2 Baseline Measurements. After training, participants were left alone for 20 minutes, so that they could rest
and stabilise. During this period we provided them with reading material with neutral content to keep them
occupied and not cause any anxiety (descriptions and photographs of plants growing in different regions of the
world), as recommended in the TSST protocol [20]. We also asked them not to use their smartphone during this
time. Following, the participants were asked to complete a round of tasks on a smartphone. The purpose of this
stage was to create a baseline measurement of performance while not stressed. After finishing the tasks, the
participants completed the STAI questionnaire [54] to measure their perceived anxiety state.

3.3.3 Inducing Stress — Step 1. We guided our participants to the experiment room. Here, we provided them with
a scenario according to which they were applying for their dream job and needed to attend a hiring interview.
Participants were given 5 minutes to prepare a speech to convince a panel as to why they were the best candidate
for their dream job. We also informed them that their performance was going to be video-recorded and reviewed
by judges trained in public speaking. Once the preparation time was over, the participants were asked to deliver
their speech in front of the panel of three judges, who were, unbeknownst to the participants, confederates of the
research team. Participants had to speak for the entire 5 minutes, during which the panel members did not give
any feedback and maintained neutral facial expressions.

3.3.4 Inducing Stress — Step 2. Upon completing step 1, participants were asked to perform an arithmetic task.
We asked them to subsequently decrement 1022 by 13 and to say the number sequence out loud. The task is
inspired by the ‘Serial Sevens’ tasks [52], which is used in clinical tests to assess mental functions, and lasts for
5 minutes. In case of miscalculation, a researcher informed the participants of their error and they were asked
to restart the task from 1022. The purpose of the arithmetic task was to induce further stress on participants.
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After completing the arithmetic task, the participants completed a round of tasks on a smartphone under stress,
followed by the STAI questionnaire (Round 1).

3.3.5 Post-Stress Recovery. At this stage, we brought participants back to the desensitisation room and left them
alone for 10 minutes to rest and recover. We then asked them to complete a final round of smartphone tasks
and complete the STAI questionnaire (Round 2). According to the TSST protocol [20], cortisol level reaches its
peak during this moment of the experiment and, therefore, we wanted to assess their performance during mobile
interaction at this point.

3.3.6 Participant Debriefing. Finally, we debriefed participants about the real purpose of the study and explained
that it was expected to experience stress during the experiment. Further, we clarified that the tasks performed
during the experiment were unreasonably difficult and did not reflect upon their aptitude or ability. We also
informed them that we did not video-record their performance. We then conducted a short, semi-structured
interview with our participants, asking them to report on their subjective perception of the experiment and the
effect of stress on their performance.

4 RESULTS
In this section, we report our results regarding the effect of stress on our participants’ performance across target
acquisition, visual search, and text entry tasks. We also report participants’ subjective assessments of their
performance in the aforementioned smartphone tasks.

4.1 Validation of Stress Occurrence
We used HRV to validate the presence of stress in our participants and followed the process, described by
McDuff and colleagues [31]. To generate HRV data from the bio-signals collected with the Empatica E4 sensor,
we performed the generic HRV analysis method as follows. First, we interpolated and re-sampled inter-beat
interval (IBI) data at 4Hz, to align the signals in a uniform time interval. Then we obtained an HRV power
spectrum in time series from the detrended interpolated IBI data, by applying the Fast Fourier Transform (FFT)
algorithm with a 512-sized slide window (i.e., a 512-sample or 128-second segment of a signal). We calculated the
HF (High-Frequency) powers of the HRV as the summation of the discrete points corresponding to the power
spectrum under 0.15 − 0.40Hz. As HF HRV was previously shown to be a reliable indicator of stress occurrence
[4], we used it for further validation of presence of stress in our participants. We acknowledge that HRV can
be a result of multiple factors apart from stress; however, we argue that in combination with the established
stress-inducing protocol and participants’ self-reports, we were able to reliably validate the occurrence of stress
during our experiment. In addition, we did not collect EDA data due to the following reasons. First, EDA data
collected from the wrist is shown to describe thermoregulatory relevant electrodermal phenomena, rather than
the psychophysiological nature of the response [8]. Second, EDA is better suited for validating stress caused
by discrete events (e.g., electrical shock) [7, 8, 51], whereas in our study participants experienced longitudinal
cumulative stress.
We applied a one-way repeated measures ANOVA, which yielded a statistically significant effect of stress

on heart rate variability (F (2, 24) = 6.54,p < 0.01). A Tukey HSD post-hoc comparison test (with Bonferroni
corrections) reveals that HRV values during Stress Induction (M = 32.84, SD = 20.89) and Post-stress Recovery
periods (M = 37.24, SD = 18.69) are significantly lower (p < 0.01) compared to HRV values during the baseline
measurements (M = 40.81, SD = 26.05). Since low values of HF HRV indicate a physiological presence of
stress [15], we can conclude from the HRV results that the participants were stressed after undergoing both the
speech and arithmetic subtraction tasks of the protocol. The mean values for HF HRV are visualised in Figure 3.
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Fig. 3. HRV (HF) Mean Values (95% Confidence Interval (CI))

Next, we examined participants’ self-reported anxiety values as measured by the STAI questionnaire as
collected following completion of each round of smartphone tasks. A one-way repeated measures ANOVA yielded
a statistically significant effect of stress on self-reported anxiety values (F (2, 24) = 10.23,p < 0.01). Post-hoc
comparisons using the Tukey HSD test (with Bonferroni corrections) indicated that participants were significantly
more anxious (p < 0.01) during Stress Induction period (M = 37.08, SD = 11.77) of the experiment compared to
the baseline values (M = 30.71, SD = 6.37). Furthermore, participants reported feeling significantly less anxious
(p < 0.01) during Post-stress Recovery period (M = 31.79, SD = 8.64) when compared to Stress Induction period.
The mean values for self-reported anxiety levels are presented in Figure 4.

Fig. 4. Self-Reported Anxiety Mean Values (95% CI)

From the sensor data and self-reported anxiety values we can conclude that the study protocol performed as
intended in terms of inducing stress in participants.

4.2 Target Acquisition Task
We measured the target acquisition performance in terms of target acquisition time (ms), offset (px) between
the target centre and the touch point, and effective throughput3. First, we applied a one-way repeated measures
ANOVA to investigate the effect of stress on target acquisition time. The result showed a statistically significant
3A measure of human performance in completing target selection tasks that describes the relationship between the difficulty of the task and
target acquisition time [28]
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effect of stress on time taken to hit a target (F (2, 24) = 17.05,p < 0.01). Post-hoc comparisons using the Tukey
HSD test (with Bonferroni corrections) indicate that participants take significantly less time to tap a circle in Stress
Induction (M = 534.77, SD = 124.43,p < 0.01) and Post-stress recovery periods (M = 520.18, SD = 126.52,p <
0.01) as compared to the baseline (M = 538.68, SD = 127.58). However, we found no statistically significant
difference between time taken to hit a circle between Stress Induction and Post-stress Recovery periods. Mean
target acquisition time values are presented in Figure 5.

Fig. 5. Mean Target Acquisition Time (95% CI)

Then, we investigated the effect of stress on the touch accuracy during target acquisition. A one-way repeated
measures ANOVA showed a statistically significant effect of stress on the offset size (F (2, 24) = 20.11,p < 0.01).
Post-hoc comparisons using the Tukey HSD test (with Bonferroni corrections) indicate that touch offset size
is significantly larger in Stress Induction (M = 49.14, SD = 25.94,p < 0.01) and Post-stress Recovery periods
(M = 50.20, SD = 26.51,p < 0.01) as compared to the Baseline value of the offset size (M = 46.47, SD = 25.57).
However, we found no statistically significant difference in offset size between Stress induction and Post-stress
Recovery measurements (p > 0.05). Mean offset size values are visualised in Figure 6.

Fig. 6. Mean Offset Size (95% CI)

Finally, we studied the effect of stress on effective throughput. Effective throughput was calculated as suggested
by Soukoreff and MacKenzie [53]. A one-way repeated measures ANOVA did not show a statistically significant
effect of stress on the effective throughput during target acquisition tasks (p > 0.05).
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4.3 Visual Search Task
Wemeasured the performance during the visual search task in terms of the time taken to memorise the target icon,
and the time taken to find the target icon. A one-way repeated measures ANOVA showed a statistically significant
effect of stress on the time taken to memorise an icon (F (2, 24) = 31.77,p < 0.01). Post-hoc comparisons using
the Tukey HSD test (with Bonferroni corrections) indicated that participants take less time to memorise an icon
in Stress Induction (M = 714.52, SD = 229.27,p < 0.01) and Post-stress Recovery periods (M = 702.31, SD =
200.85,p < 0.01) when compared to the baseline measurement (M = 800.51, SD = 331.15). However, we found
no statistically significant difference in the time taken to memorise an icon between the values measured during
Stress Induction and Post-stress Recovery (p > 0.05). Mean values for time taken to memorise an icon are
visualised in Figure 7.

Fig. 7. Mean Time to Memorise an Icon (95% CI)

Then, we conducted a one-way repeated measures ANOVA to investigate the effect of stress on time taken
to find a target. The results of the test did not show a statistically significant effect of stress on visual search
time (p > 0.05). Finally, we investigated the effect of stress on the number of errors during visual search tasks. A
one-way repeated measures ANOVA did not show an effect of stress on the number of errors.

4.4 Text Entry Task
We measured text entry performance in terms of character entry rate, number of total errors, and total error rate
as suggested by Soukoreff and MacKenzie [53]. Character entry rate was calculated as the time taken to enter a
character, while number of total errors was calculated as the sum of uncorrected and corrected errors. Finally,
total error rate was the ratio between the number of total errors and total entered characters. We conducted a
one-way repeated measures ANOVA to investigate the effect of stress on time per character entry. The results
did not reveal a statistically significant effect of stress on time per character entry (p = 0.056), with participants
tending to take less time per character entry after post-stress recovery time. Furthermore, a one-way repeated
measures ANOVA did not show a statistically significant effect of stress on the number of total errors (p > 0.05),
nor on total error rate (p > 0.05).

As we presented our participants with two types of texts: easy and difficult, we conducted a two-way repeated
measures ANOVA, accounting for the effect of difficulty and stress on the number of total errors and total error
rate. We did not consider this difference for the character entry rate, as this is already accounted for with text
difficulty. The results of the ANOVA showed a statistically significant effect of the difficulty of the text on the
number of total errors (F (1, 24) = 34.22,p < 0.01). However, we did not find an interaction effect between

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 1, Article 24. Publication date: March 2019.



Measuring the Effects of Stress on Mobile Interaction • 24:11

the difficulty of the text and stress (p > 0.05). Finally, a two-way repeated measures ANOVA did not show a
statistically significant effect of the difficulty of the text on the total error rate (p > 0.01).

4.5 Interviews
To familiarise ourselves with the data collected during the semi-structured interviews, we read through each
response and analysed it using the following process. One researcher printed participant responses and completed
initial coding, utilising a data-driven approach based on our aforementioned results. Then, three researchers
compared the initial codes and merged these according to their similarity (e.g., “I rushed the task” and “I got
progressively slower” merged to “Task completion time” ). The three researchers then independently coded partici-
pants’ responses for each question as based on the initial codebook. We reviewed the final coding to identify
similarities that allowed thematic grouping. The main themes are described below.

4.5.1 Psychological Effects of Stress on Perceived Performance. The majority of the participants (N = 19) stated
that stress affected their behaviour. For instance, participants ended up rushing through the tasks when stressed.
Rushing the tasks affected their performance in terms of accuracy during target acquisition tasks. Example quotes
are: “I was more annoyed and just wanted to get the tasks done, so I rushed” (P13), “I think because I rushed the
task I got less accurate” (P17), “When I’m stressed I get adrenaline, and tap faster, but when I make a mistake I go
slower, but still not very accurate” (P14). These findings are in line with our quantitative data, that showed that
participants took significantly less time to tap circles when they were stressed as well as they were less accurate.
Participants also reported that stress had an effect on their ability to concentrate and focus. However, the

comments regarding concentration were not unanimous. While some participants (N = 8) claimed that stress
impaired their concentration, others claimed that stress sharpened their focus (N = 5). This concords with the fact
that, for some participants their perceived performance during visual search and text entry tasks was improved,
for example, “I felt I messed up during first few trials as I wasn’t paying attention, but stress made me focus better”
(P07), “After speech I couldn’t concentrate” (P20). While for others, their perceived performance deteriorated: “I
forgot the icons as I was stressed” (P04), “I was thinking about the icons, focused on them, but after the arithmetic
task I wasn’t focused on the icon, and 60% of the time i just pressed continue and was thinking what was the icon I
needed to find” (P17), “After presentation I couldn’t focus, when I was doing the icons task I was thinking about my
presentation and it took longer time to focus on the icon” (P18).

4.5.2 Physical Effect of Stress on Perceived Performance. We found that stress affected participants not only
psychologically, but also physically. Several participants (N = 5) claimed that stress had a physical effect on them.
All of these participants reported that they felt jittery under stress, and as a result they were less accurate when
completing target acquisition tasks. We recorded the following quotes from our participants: “I was more jittery
after the speech, my fingers were more shaky” (P09), “My fingers were shivering, especially after the presentation.
My head was cloudy, and I was not focused” (P14). These findings are in line with our quantitative results, which
show that participants are less accurate in target acquisition task when they are stressed.

4.5.3 Self-Reflection. We also found that several participants reflected on their performance in the speech and
arithmetic tasks. This self-reflection was mostly performed during the final part of the study when participants
were left alone in the desensitisation room for a post-stress recovery period. While some participants (N = 7)
expressed their concerns regarding their performance during the arithmetic task: “I was thinking that I could have
done better in the arithmetic task”, others (N = 7) reflected on their performance during the speech task: “I was
thinking how bad I did in the presentation” (P16). These comments indicate that even after the stress-inducing
tasks during post-stress recovery period, participants were still preoccupied with their performance.
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Table 1. Comparison of the Effects of Situational Impairments against Respective Baseline.

Baseline Situational Impairments

Warm Silent No stress Cold Music
Fast

Music
Slow

Noise
Indoor

Noise
Outdoor

Speech
Meaningful

Speech
Meaningless Stress Post-Stress

Recovery

Time to tap
a circle, ms 593.00 591.84 538.68 603.00

+ 1.7%
577.76
- 2.4%

574.15
- 3.0%

583.56
- 1.4%

573.56
- 3.1%

592.81
+ 0.2%

609.38
+ 3.0%

534.77
- 0.7%

520.18
- 3.4%

Offset
size, px 41.34 39.38 46.47 42.66

+ 3.1%
42.95
+9.1%

42.11
+ 6.9%

41.06
+ 4.3%

40.91
+ 3.9%

42.90
+ 8.9%

39.47
+ 0.3%

49.14
+ 5.7%

50.20
+ 8.0%

Time to
memorise
an icon, ms

815.00 748.76 800.51 854.00
+ 4.8%

737.71
- 1.5%

745.15
- 0.5%

712.11
- 4.9%

743.56
- 0.7%

753.20
+ 0.6%

738.90
- 1.3%

714.52
- 4.6%

702.31
- 12.3%

Time to
find an
icon, ms

1632.24 1587.74 1602.45 1942.46
+ 19.0%

1564.70
- 1.4%

1753.19
+ 10.4%

1543.12
- 2.8%

1633.15
+ 2.9%

1637.54
+ 3.1%

1520.99
- 4.2%

1496.50
- 6.6%

1506.38
- 6.0%

Character
entry rate,
ms/char

n/a 454.39 560.88 n/a 488.11
+ 7.4%

485.14
+ 6.8%

480.96
+ 5.8%

523.89
+ 15.3%

539.82
+ 18.8%

508.99
+ 12.0%

547.16
- 2.4%

495.83
- 11.6%

Total error
rate, % n/a 7.54 7.46 n/a 7.45

- 1.2%
7.38
- 2.1%

8.54
+ 13.3%

8.22
+ 9.0%

7.09
- 6.0%

7.07
- 6.2%

10.50
+ 40.8%

9.40
+ 26.0%

Mean values per condition, relative change in % as compared to baseline.
Colour code explanation: Blue – findings of study on ambient temperature [42].

Yellow – findings of study on ambient noise [44]. Gray – findings of this study.

4.6 Comparison between Situational Impairments
In this section, we compare stress-, cold- and noise-induced situational impairments. This comparison allows us
to increase our understanding on the impact of different situational impairments, thus contributing towards this
growing research agenda.

We present the mean values for the following variables in Table 1: time taken to tap a circle, size of the offset,
time taken to memorise an icon, time taken to find an icon, character entry rate, and total error rate in typing. The
last two variables are not available for the cold-induced situational impairments, as the authors did not quantify
performance during the text entry task under cold ambience [42]. Furthermore, we calculate the magnitude of
the impact of each situational impairment, when compared to their respective baseline (as a percentage). Given
these calculations and the fact that the experimental tasks were identical between the three studies, we are
able to directly compare magnitudes of the effects of each factor causing situational impairments (stress, cold
ambience [42], ambient noise [44]).

From the table, we observe that when it comes to hitting buttons and icons on the screen (target acquisition)
stress has a more detrimental effect than other situational impairments, even than cold. In fact, our results show
that during post-stress recovery, participants are less accurate at hitting targets than when they are exposed
to cold ambience. Further, stress affected participants differently when compared to noise: character entry rate
dropped by −11.6% and total error rate increased by +26.0%.

Interestingly, however, in Table 1 we see although stress is detrimental to target acquisition, its effect is not as
acute as the one of music with fast tempo (+9.1%), and meaningful speech (+8.9%). Nevertheless, we can conclude
that the effect of stress is the greatest on memorising time (−12.3%) compared to cold or ambient noise.
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5 DISCUSSION
Our findings suggest that even though we do not find a significant effect of stress on throughput in the target
acquisition task, it does lead participants to favour speed to the detriment of accuracy. We also show that under
stress our participants are quicker to memorise an icon during the visual search task. However, our results do not
reveal a significant effect of stress on the text entry task. Below we discuss our findings with regard to existing
work. We then discuss the benefits and potential future contributions of this research to the HCI community.

5.1 Effects of Stress on Interaction
Our results show that the target acquisition time and memorising time are significantly shorter when participants
tap circles and complete visual search tasks after the post-stress recovery period. Our findings are in line with
prior literature, which shows that people tend to rush and require significantly less time to complete tasks when
stressed [33]. Moreover, our participants confirm this behaviour during the interview sessions. They mention
that stress caused them anxiety and discomfort, and, hence they rushed through the tasks. Furthermore, the
participants report that stress affected their concentration and focus. As a result, they did not pay attention to the
icon shown during the visual search task. Instead, they proceeded to the next screen for the sake of completing
the task.
Additionally, our results show that stress causes our participants to be less accurate when performing target

acquisition tasks. This result also reflects prior literature, which shows that people tend to have higher error rates
in completing tasks when stressed [33]. Interestingly, this is also the case in the post-stress recovery measurements.
During our interviews the participants claimed that they spent this post-stress recovery period self-reflecting on
the tasks, which kept them stressed throughout the recovery period. Consequently, their performance during
mobile interaction was negatively affected. Our findings are in line with literature [20], as the authors of the
TSST report a high cortisol level in participants during the post-stress recovery period.

Nevertheless, our findings do not show a statistically significant effect of stress on effective throughput in the
target acquisition task. This result is in line with prior findings by MacKenzie and Isokoski, where they show that
throughput remains constant when target acquisition time and accuracy drop during tapping tasks [28]. This can
be explained by the fact that throughput accounts for both speed and accuracy and as these two variables change
in opposite directions, throughput does not significantly change [28]. However, we note that while throughput
remained relatively constant in this scenario, this is likely not to be the case when a stressed user interacts with a
real-world application that has a cost associated with errors.

Furthermore, our results show that text difficulty had a larger effect on performance during the text entry task
than participant stress levels. Regarding the text entry task several participants (N = 9) report that they made
comparatively more errors after they experienced stress. While our quantitative results show a tendency towards
this being the case, this effect was not statistically significant.

5.2 Contrasting Situational Impairments
Previous work has highlighted the importance of accumulating knowledge within different areas of HCI for the
formation of paramount research themes [24, 25]. Here, we contribute towards this notion by contrasting the
magnitudes of the effects of different situational impairments on mobile interaction.
Previous work, utilising the same tasks reported in this study, has shown that text entry rate is significantly

affected by ambient noise, particularly when considering meaningful speech (speech in a language the participant
understands) [44]. However, in our study, participants’ performance during text entry (in terms of character entry
rate) was not significantly affected by stress, suggesting that stress has a smaller effect on participants’ ability to
perform text entry compared to meaningful speech. This is not surprising given the nature of the text entry task.
Meaningful speech is particularly disruptive when a person is thinking about what they should say or write [30].
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Furthermore, in Table 1 we can see that the effect of cold ambience on the target access time was opposite to the
one of stress. To be precise, target acquisition time was longer in cold environment [42]; however, it was shorter
during the post-stress recovery period (as compared to the relative baselines). This can be explained by the nature
of the environment, as cold ambience decreases manual dexterity [60], and hence, increases the completion time
for the tasks involving fine-motor manipulations [66]. Whereas, stress is known to increase anxiety [23], thus
leading people to rush to complete the tasks [33]. This effect was also highlighted in our qualitative data; and
is applicable not only for tasks requiring fine-motor skills, but also for visual search tasks. For example, our
participants spent less time on memorising and searching for icons, as compared to the participants from the
study presented in [42], where they took longer time both to memorise and find icons. Interestingly, cold-, noise-,
and stress-induced situational impairments have a roughly comparable adverse effect on the tapping accuracy.
This can be explained by the nature of the task, as both external and internal factors affect accuracy in only one
direction – negative. The only difference is the magnitude of the effect, shown in detail in Table 1.

5.3 Implications for Research and Design
Previous research has emphasised the importance of understanding the effects of situational impairments on
mobile interaction, as it further enables the construction of sensing mechanisms to detect situational impairments
and, thus, adapt the interface accordingly [43]. Our study shows that stress can impair mobile interaction, and,
hence, this information can be used to adapt the interface to accommodate such impairments. For instance, to
mitigate the effects of stress-induced situational impairments on target acquisition tasks, it is possible to increase
target sizes or use techniques proposed in the literature to improve input accuracy, such as GraspZoom [34]
and Fat Thumb [6]. GraspZoom allows zooming on a particular part of the screen with a long press using only
the thumb [34]. Fat Thumb includes only two interaction gesture modes: panning and zooming, with gesture
being defined by the contact size of the thumb [6]. We acknowledge that the effect size of stress on interaction
performance might not seem to be strong enough to impair the user experience in real world scenario. However,
we expect that when completing more complex tasks on a smartphone, the effect size would be more pronounced.

However, it is necessary to first detect stress before adaptation actually takes place. Wearable sensors have
successfully been leveraged for this purpose by measuring physiological measurements such as skin conductiv-
ity [50] and heart rate variability [56]. In our study we use HRV measured through a wearable device alongside
self-reports, to confirm that participants are indeed being affected by the TSST protocol. Beyond sensor data and
self-reports, previous work has shown that daily stress can also be inferred from smartphone usage, personality
traits, and weather data [5]. Moreover, the Intel Mobile Heart Health [36] prototype uses data from sources
such as mobile phone-based ecological momentary assessment and a small electrocardiograph sensor with an
accelerometer to detect changes in heart rate variability, activity, and mood. If individualised threshold values
are reached, the mobile phone delivers cognitive behavioural and mindfulness techniques designed to reduce
stress [36]. Within the literature on situational impairments, there are also several examples of sensor information
being used to detect certain contextual factors. For example, Goel et al. [11] used a smartphone’s accelerometer to
detect if the user is walking. Similarly, Sarsenbayeva et al. suggested using the smartphone’s battery temperature
to detect cold-induced situational impairments [45].

Ultimately, this detection should ideally be performed unobtrusively and without creating additional stress [14].
Unobtrusive and continuous stress detection would benefit mobile device users. For example, an individual
being aware of their exposure to stress, could change their behaviour to eliminate unnecessary stressors [14]. A
smartphone’s operating system that understands the user’s application usage behaviour [17, 58], and having
detected the user being stressed, could prevent unnecessary notifications or updates being presented [14], and
adapt the interface to minimise errors.
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5.4 Limitations
We acknowledge a number of limitations in our study. First, the study settings were strictly controlled. It is
possible that in a more naturalistic environment, participants can experience a stronger level of stress. However,
it was necessary to follow an established protocol to strictly control stress induction and avoid causing harm to
our participants. The types of smartphone tasks presented in this study were limited to target acquisition, visual
search, and text entry, whereas, in a naturalistic environment, users may perform more complex tasks, requiring
more cognitive demand [2]. Nevertheless, in this study we reported a statistically significant effect of stress on
basic smartphone tasks (e.g., target acquisition and visual search), which suggests that this effect would be more
pronounced when completing more complex tasks during mobile interaction. Furthermore, we did not find any
statistically significant effect of stress on text entry tasks. However, we acknowledge that stress might have an
impact on text entry performance with more complex sentences. Future research is needed to investigate this
assumption. Finally, we restricted our participants to only one interaction mode with the smartphone – using the
index finger. We argue that controlling the interaction mode was necessary to draw a fair comparison between
the effects of stress, ambient noise [44], and cold ambience [42].

6 CONCLUSION
In this work, we investigate the effects of stress on performance on three common mobile interaction tasks: target
acquisition, visual search, and text entry. We use the Trier Social Stress Test to induce stress on participants. Our
findings show that the target acquisition time and the time to memorise an icon become significantly shorter
during stress and post-stress recovery periods. We also show that stress deteriorates participants’ accuracy during
target acquisition tasks. These findings can be used to inform how interfaces should adapt to accommodate such
impairments.
We then compare the effects of cold-, noise-, and stress-induced situational impairments on performance

during mobile interaction. Our results show that the effect was more pronounced on target acquisition tasks in
terms of task completion time and accuracy. Our findings on the effects of stress on mobile interaction extend our
understanding of situational impairments. This knowledge is paramount to inform the development of adaptive
interfaces that accommodate such impairments.
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Chapter 6

Quantifying the Effects of Dim
Ambient Light on Mobile Interaction

This chapter presents our work on quantifying the effects of dim ambient light on
mobile interaction. Prior research has previously established the negative effects
of bright sunlight on mobile interaction, as with an increased ambient illuminance,
smartphone screens become more challenging to use [77] due to different factors
(e.g., reduced screen contrast [220] or screen glare [139]). However, the effect of
dim ambient light on mobile interaction has not been thoroughly investigated.
The existing knowledge on this area is limited to the study conducted by Lee et
al. [130], where they establish a negative effect of low ambient illuminance on
visual search. In this work we investigate the effect of ambient light on three
smartphone tasks (target acquisition, visual search, and text entry) under three
ambient light conditions:

• Baseline condition set to 330 lux, which is a standard illuminance level in
the office environment [190];

• Surrounding dim illuminance set to 20 lux;

• Dim illuminance caused by participants wearing sunglasses under the base-
line condition. The sunglasses were of category 2 non-polarised lenses,
commonly used among general population.

The study was conducted in laboratory settings and we strictly controlled for the
illuminance level to exclude the presence of natural sunlight or other potential
confounding factors (e.g., screen glare). These conditions were selected as they
are commonly present during mobile interaction (e.g., in the office room with no
windows or in a dark room).

The findings of our study show that dim ambient light negatively affects the
target acquisition task. In particular, participants were significantly slower and
less accurate when accessing targets under both surrounding and local dim light
conditions as compared to the baseline condition. Our results also show that
the participants took longer time to memorise icons in visual search task when
wearing sunglasses.
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This work contributes towards understanding of dim light-induced SIIDs and
their effect on smartphone interaction. Technicalities of our approach are detailed
in the attached publication in Section 6.1.
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Abstract. In this work we investigate the effect of ambient light on perfor-
mance during mobile interaction. We evaluate three conditions of ambient light
– normal light, dimmed light, normal light while wearing sunglasses. Our results
show that wearing sunglasses and dimmed light negatively affect reaction time,
while dimmed light negatively affects accuracy performance in target acquisition
tasks. We also show that wearing sunglasses increases memorising time in visual
search tasks. Our study contributes to the growing body of research on the
effects of different situational impairments on mobile interaction.

Keywords: Mobile interaction·Situational visual impairments·Ambient light.

1 Introduction

Smartphones have become an integral part of human daily life, and a focus of research
conducted in our community [8,9]. People find themselves using their smartphones under
various challenging contexts [23]. Factors such as cold ambience [2,18], encumbrance [10],
walking [1], and ambient noise [16] have all been shown to hinder smartphone inter-
action [15] and cause situational impairments [19,24]. While the effects of a number
of situational impairments on mobile interaction have been studied and are established
within the HCI research community, many situational impairments remain underex-
plored. In their overview of situational impairments, Sarsenbayeva et al. [15] identify
a research gap concerning the effects of ambient light on mobile interaction, despite the
fact that it is common to use one’s smartphone in varying light conditions (e.g., watching
a movie with the lights off or interacting with the device while wearing sunglasses).
Therefore, in this paper we investigate the effect of ambient light conditions on

mobile interaction. We quantify mobile interaction performance in terms of three ev-
eryday smartphone activities – target acquisition, visual search, and text entry – under
three distinct ambient lighting conditions: 1) normal light condition (operationalised
as recommended indoor light levels for easy to normal office work [12]), 2) dimmed
light condition, and 3) normal light condition while wearing sunglasses. We limit our
investigation to the effect of reduced illuminance conditions. We do not study the effect
of bright light on smartphone interaction for a number of reasons. First, the existing
literature has already established the adverse effect of bright light on performance
in visual tasks on mobile device screens [7]. Second, we want to exclude the effect of
confounding parameters, such as glare, that is caused by bright light and leads to a
decrease in visual task performance on mobile phone screens [7].

Our study shows that dimmed light, as well as wearing sunglasses, negatively affects
mobile interaction performance in terms of target acquisition time. We also show that
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tapping accuracy decreases under the dimmed light condition, while wearing sunglasses
increases target memorising time. Our work contributes to the growing body of research
in the HCI community on situational impairments.

2 Related Work

2.1 Situational Visual Impairments during Mobile Interaction

Tigwell et al. [22] identified ambient light as one of the leading causes of visual
situational impairments. Ambient light has been shown to affect people’s perception as
well as the clarity of a smartphone’s display. For example, Gong et al. [3] show that as
ambient light intensity increases, mobile device screens become more challenging to use.
This might be because increasing ambient brightness while decreasing monitor brightness
reduces colour differentiation abilities, as found by Reinecke et al. [13]. Furthermore, it
has been shown that for illuminance levels higher than 1000 lx, participants’ visual task
performance declines at a faster rate compared to illuminance levels lower than 1000 lx,
due to screen glare [7]. Dimmed ambient light has also been shown to visually impair
users; however, only limited research has investigated its effect. For example, Lee et al.
[6] investigated the effect of ambient illuminance on performance while reading e-papers.
They found that search speed and illuminance level were directly proportional: with
low search speed being associated with low levels of illuminance. Liu et al. [7] studied
the effect of ambient light on handheld display image quality. The authors found that
in darker environments, participants performed better in visual tasks as compared to
bright environments. These findings are in line with findings from Kim et al. [5] which
demonstrate that perceived image quality on screens decreases in bright environments.
However, both of the aforementioned studies featured a limited number of participants
(3 participants in [7], 10 participants in [5]). Furthermore, both of the studies focused
on the perception of image quality on mobile device screens.

3 Method

In this study, we investigate the effect of an environmental factor – ambient light –
on mobile interaction. In particular, we focus on mobile interaction under dimmed
light conditions. We quantify interaction performance across three typical smartphone
tasks: target acquisition, visual search, and text entry. We used the tasks developed
and presented in a study by Sarsenbayeva et al. [16] in order to directly compare the
effect of ambient light-induced situational impairments to the established effects of
cold- [2,18], noise- [16], and stress-induced [14] situational impairments.

3.1 Smartphone Tasks

In this study, we used a Samsung Galaxy S7 smartphone running Android 7.0 with
1080×1920px screen size (similar to the one used in the studies by Sarsenbayeva et
al. [16,18]). To minimise sequence effects, participants completed the three tasks in
a counterbalanced order. Furthermore, we minimised any potential learning effects by
asking our participants to undergo extensive training in all three tasks prior to the
start of the actual experiment. The participants completed the tasks in a standing
position, interacting with the phone with the index finger of their dominant hand while
holding the phone in their non-dominant hand.
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Fig. 1: Interface of the application with Target Acquisition Task (A), Visual Search
Task (B-C), and Text Entry Task with user’s input for easy and difficult texts (D-E).

Target Acquisition In this task, participants tap circular targets (Radius = 135px)
with an indicated centre (Figure 1-A). The targets appear on a random position on the
screen, one circle at a time. We asked our participants to tap the centre of the circles
as precisely and quickly as possible. We measure participants’ performance in terms
of their reaction speed (time required to tap targets) and accuracy (offset size).

Visual Search In this task, participants are asked to find a target icon among 24 other
icons, arranged according to a 4×6 grid [4]. The participants are first shown the icon, and
given as much time as required to memorise it (Figure 1-B). Then, participants must find
this icon in the subsequent screen (Figure 1-C). Target icons are selected randomly from
the pool, and the icons are placed at random positions on the screen to minimise any
potential learning effects. We quantify participants’ performance in terms of cognition
(time to memorise an icon), reaction (time to find an icon), and accuracy (error rate).

Text Entry In this task, participants are instructed to type a snippet of text shown
in a text box. The texts are of two difficulties: 1) easy – consisting of only one sentence
with commonly used words (Figure 1-D), and 2) difficult – consisting of several sen-
tences with outdated words (Figure 1-E). For each round, participants are presented a
randomly selected easy sentence (10 in total) and a randomly selected difficult sentence
(10 in total). We measure how quick (character entry rate) and accurate (error rate)
participants were in entering the text.

3.2 Participants

We recruited 28 participants through our university’s mailing lists. Participants are
between 18 and 33 (M=23,SD=3.70) years old. In total, we recruited 19 female and
9 male participants. Our participants have a diverse range of educational background
(e.g., Accounting, Actuarial Sciences, Biomedicine, Business, Chemistry, Food Science,
Urban Planning). All participants have normal or corrected-to-normal vision (contact
lenses) and are right-handed. All of our participants were used to wearing sunglasses.



4 Z. Sarsenbayeva et al.

3.3 Procedure

Our experiment contains three conditions: 1) normal light condition (recommended
indoor light levels for easy to normal office work [12]), 2) dimmed light condition, and
3) normal light condition while wearing sunglasses. We followed the guidelines for illumi-
nance standards in a working environment, and hence set the room’s illuminance to 335
lx for the normal light condition [12]. In the dimmed light condition, the illuminance of
the room was set to 20 lx, a light level which we consider a dark environment to perform
most activities. Finally, for the third condition, participants were required to wear non-
polarised sunglasses with category 2 lenses under the same illuminance as the normal light
condition. Our choice of sunglasses is justified by its popularity of use among the general
population, as a category 2 lens provides a medium level of sun glare reduction and UV
protection with a visible light transmission of 18∼45% [21]. We ensured that the bright-
ness level of the smartphone was kept constant at a medium level throughout the entire
experiment, and disabled brightness auto-adjustment to ensure consistency in the study
setup. Furthermore, we counterbalanced the presentation order of the conditions across
the participants. At the end of the experiment we conducted semi-structured interviews
with each participant to understand their perceived performance during the completion
of the tasks. The Human Ethics committee of our university approved this experiment.

4 Results

To investigate the effect of ambient light on performance during smartphone inter-
action, we conducted a one-way repeated measures ANOVA on the aforementioned
performance-measurement variables. We describe the results of our findings per each
smartphone task. We removed extreme outliers from our data (3 individual data points
in total from the whole dataset).

4.1 Target Acquisition

First, we investigated the effect of ambient light on target acquisition time (milliseconds).
The result of a one-way repeated measures ANOVA revealed a statistically significant
effect of ambient light on target acquisition time (F (2,7607)=8.20,p<0.01). Post-hoc
comparison using the Tukey HSD test (with Bonferroni corrections) showed that there
is a significant difference (p=0.02) between target acquisition time under the dimmed
light condition (M=495,SD=110) and the normal light condition (M=485,SD=103).
Moreover, our results show that the participants took a significantly longer time tapping
a target (p < 0.01) while wearing sunglasses (M = 498,SD= 115) when compared
to the normal light condition. However, there was no significant difference between
the dimmed light condition and wearing sunglasses (p>0.05). Mean values for target
acquisition time are presented in Figure 2 (a).

We then examined the effect of ambient light on touch accuracy. A one-way repeated
measures ANOVA showed a statistically significant effect of ambient light on the par-
ticipants’ offset size (F (2,7607)=7.32,p<0.01). Post-hoc comparison using the Tukey
HSD test (with Bonferroni corrections) indicated that the offset size was significantly
larger under the dimmed light condition (M=49.50,SD=26.70,p=0.02) as compared
to the normal light condition (M=47.70,SD=25.80). We also found a statistically
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significant difference in offset size between the dimmed light and sunglasses conditions
(M=46.7,SD=26.40, p<0.01). However, there was no significant difference between
the offset size under normal light and sunglasses conditions. Mean values for offset size
are presented in Figure 2 (b).

(a) (b)

Fig. 2: Mean Target Acquisition Time and Offset Size (95% CI)

We also studied the effect of ambient light on effective throughput, calculated as
proposed by Soukoreff & MacKenzie [20]. A one-way repeated measures ANOVA did
not reveal a significant effect of ambient light on the effective throughput during target
acquisition tasks.

4.2 Visual Search

We examined the effect of ambient light on the time taken to memorise (milliseconds)
and subsequently find an icon (milliseconds). The result of a one-way repeated measures
ANOVA revealed a statistically significant effect of ambient light on the time taken
to memorise an icon (F (2,2045)=4.42,p=0.01). Post-hoc comparisons using the Tukey
HSD test (with Bonferroni corrections) indicated that participants took significantly
longer time to memorise icons in the sunglasses condition (M=744,SD=271,p=0.01)
than the dimmed light condition (M=703,SD=206). The mean values to memorise
an icon are presented in Figure 3. However, we did not find a statistically significant
difference between the normal light condition and the dimmed light condition (p>0.05)
for the time taken to memorise an icon. We found similar results when comparing the
wearing sunglasses condition to the normal light condition (p>0.05).

4.3 Text Entry

In the text entry task we measured participants’ performance in terms of time per
character entry in milliseconds and total error rate [20]. We calculated character entry
rate as time taken to input a character, while the total error rate was calculated as
the ratio between the number of total errors and total entered characters. A one-way
repeated measures ANOVA did not reveal a statistically significant effect of ambient
light on either character entry rate or error rate (p>0.05). We built two gerenalised
linear mixed-effect models to describe the effect of ambient light on character entry
rate and error rate. None of the predictors had a significant effect on text entry rate.
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Fig. 3: Mean Time to Memorise an Icon (95% CI)

4.4 Qualitative Results

During the interview, our participants commented on their subjective perception of
performance during the smartphone tasks. A number of participants (8 out of 28)
mentioned that wearing sunglasses and dimmed light conditions affected their target
acquisition time: “A little longer when I’m wearing the sunglasses.” (P02), “I was
quicker when there was more light.” (P12), “Longer time was required under dimmed
light” (P06). These findings are in line with our quantitative findings which show a
negative effect of dimmed light and wearing sunglasses on target acquisition time.

Regarding the self-perceived accuracy during the target acquisition task, half of our
participants (14 out of 28) indicated that they were more accurate under the normal light
condition as compared to the dimmed light condition. “In the dimmed light it was harder
to accurately tap the center of circles” (P04). These findings correspond to our quantita-
tive data that shows that under the dimmed light participants were less accurate. Surpris-
ingly, two of our participants claimed they were more accurate under the dimmed light
condition, as the contrast of the screen was brighter and they could see the circle clearer:
“In the dim light I felt I was more accurate because the circles were more visible” (P19).

When we asked the participants about their perceived performance on the time taken
to memorising the icon during the visual search task, a large majority of our participants
(17 out of 24) stated that the light did not affect their performance. However, these
perceptive statements contradict our quantitative results, showing that participants
took a significantly longer time when wearing sunglasses as compared to the dimmed
light condition. Interestingly enough, one of our participants mentioned that it took
them less time to memorise icons under the dimmed light condition: “When performing
in dimmed light it takes less time to memorise icons” (P15).

Nevertheless, participants reported a negative effect of ambient light on their perceived
performance in time taken to find an icon, even though our quantitative analysis does
not support this observation. In total, 10 participants mentioned that they believe it
took them a longer time to find an icon under the dimmed light: “It affects me so
much. I took a bit longer to find the icons in a dim light condition” (P18); “When the
light is on, I can find the icon easier compared to when the light is dimmed” (P13).

Regarding the text entry task, most of the participants (N=19) claimed that the
light did not have any effect on their performance. A total of 4 participants believed
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that they were slower to type under the dimmed light condition and when wearing
sunglasses. “It took me more time to type text under dim light” (P20). Furthermore,
4 participants claimed to make more errors when the lights were dimmed. “It was more
difficult for me to type the text accurately with dim lighting. I was more confident in
typing under normal lighting” (P12). Nonetheless, our quantitative results did not show
any significant support for these statements.

5 Discussion

5.1 Impact of Ambient Light on Mobile Interaction

Our findings show that participants took a significantly longer time to tap a target while
wearing sunglasses and under the dimmed light as compared to normal light condition.
However, only a minority of our participants (8 out of 28) reported the negative impact of
ambient light on target acquisition time. This is an indication that dimmed light caused
situational visual impairments in our participant without them noticing it. Previous
work has shown that various environmental and internal factors have a different effect on
target acquisition time. For example, previous research has shown that participants took
a significantly longer time to tap circles under cold ambience due to stiff muscles [17,18].
However, under music (fast and slow tempo) and urban noise (indoor and outdoor)
conditions [16], and when exposed to stress [14], target acquisition time was significantly
shorter due to the rhythm of the music, and the anxiety caused by urban noise and stress.

Furthermore, participants were significantly less accurate in target acquisition tasks
under the dimmed light condition. This was confirmed in our qualitative data as the
participants mentioned that they felt the negative effect of dimmed light on their
interaction. In particular, our participants acknowledged that their perceived accuracy
when tapping circles in dimmed environment is worse, compared to normal ambient
illumination. This may be due to the fact that as the illuminance decreases, retinal
dopaminergic activation from photoreceptors drops, and, hence causes a situational
visual impairment [11]. In addition, our analysis did not reveal a significant effect of
wearing sunglasses on participants’ tap accuracy as compared to normal light condition.
This might be due to the fact that we used commonly available non-polarised sunglasses
that are unlikely to cause strong visual impairments.
However, we observed a negative effect of wearing sunglasses on memorising time

in visual search tasks. Moreover, we anticipate that the effect of wearing sunglasses
under bright sun light might be exacerbated as the effect of glare contributes to the
magnitude of the visual situational impairment. Although ambient light did not have a
negative impact on our participants’ visual search time, the majority of our participants
claimed that it took longer time to find an icon when the light was dimmed. However,
this may be the case given the simple nature of the task, as prior research has shown
that low illuminance levels are associated with slower search speed [6].

Finally, our analysis did not reveal a negative effect of dimmed light or wearing sun-
glasses on performance during text entry tasks. This may be due to the fact that we used
a limited number of text entry tasks that are not sufficient to observe the effect of ambient
light on text entry performance. However, previous work has shown a significant effect on
participants exposed to meaningful speech on a similar typing task (i.e. listening to some-
one speak in a language they understand while typing on their smartphone) [16]. This con-
firms that different situational factors have a different effect on typical smartphone tasks.
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5.2 Accommodating Ambient Light-Induced Situational Impairments

In summary, we demonstrate the negative impact of dimmed ambient light on fun-
damental smartphone interaction tasks. We argue that accounting for situational visual
impairments in mobile interaction is important, as the effect might accumulate as task
complexity rises. Moreover, Tigwell et al. [22] argue that the value of reducing the
effects of situational visual impairments grows as the importance of the task increases.
Previous work has proposed different methods to accommodate for situational visual
impairments during mobile interaction. For example, in the study by Tigwell et al.
[23] participants suggested increasing the contrast of the screen to reduce the effect of
situational visual impairments. Moreover, Reinecke et al. [13] suggest increasing button
sizes and adjusting the background colour to reduce the adverse effect of situational
visual impairments on mobile interaction. As smartphones already come equipped with
an ambient light sensor, these methods can be applied once a detrimental ambient
light condition is detected and the user is performing a particular task (e.g., , target
acquisition task under the dimmed light). Given that different people have differences
in their perception of contrast colours, the ambient light sensor together with adaptive
techniques (e.g., screen contrast, background colour) could be used to build personalised
interfaces to improve the smartphone interaction experience, beyond simply adjusting
the screen brightness as is the case with current devices.

5.3 Limitations

We acknowledge several limitations in this study. First, the study settings were strictly
controlled. In particular, we examined only two levels of ambient illumination – normal
and the dimmed light, and do not investigate the effect of bright ambient light (outdoor
illuminance) on smartphone interaction performance. The reason for this exclusion is
to eliminate the effect of additional external factors, such as glare and ambient noise,
on smartphone interaction performance. Finally, our experiment is limited to three
types of smartphone tasks. We argue that these tasks are representative of the vast
majority of activities that typical users undertake while using their smartphone.

6 Conclusion

In this study, we investigate the effect of three ambient light conditions on smartphone
interaction performance in target acquisition, visual search, and text entry tasks. We
found that dimmed ambient light significantly impairs target acquisition. Participants
took a significantly longer time to hit targets while wearing sunglasses or are under
dimmed light, as compared to the normal light condition. Furthermore, participants
were less accurate when tapping targets under the dimmed light condition. We also
show that participants took longer to memorise icons while wearing sunglasses when
completing visual search tasks. Our findings enhance the understanding of situational
visual impairments impact on mobile interaction and contribute to the growing body
of research in the HCI community on situational impairments.
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H., Hannu, J., Kostakos, V.: Situational impairments to mobile interaction in cold
environments. In: Proceedings of the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing. pp. 85–96. UbiComp ’16, ACM, New York, NY,
USA (2016). https://doi.org/10.1145/2971648.2971734

19. Sears, A., Lin, M., Jacko, J., Xiao, Y.: When computers fade: Pervasive computing
and situationally-induced impairments and disabilities. In: HCI International. vol. 2, pp.
1298–1302 (2003)

20. Soukoreff, R.W., MacKenzie, I.S.: Metrics for text entry research: an evaluation of msd
and kspc, and a new unified error metric. In: Proceedings of the SIGCHI conference
on Human factors in computing systems. pp. 113–120. ACM (2003)

21. Standard, A.Z.: Sunglasses and fashion spectacles (2003), https://www.saiglobal.com/
pdftemp/previews/osh/as/as1000/1000/1067.pdf

22. Tigwell, G.W., Flatla, D.R., Menzies, R.: It’s not just the light: understanding the factors
causing situational visual impairments during mobile interaction. In: Proceedings of the
10th Nordic Conference on Human-Computer Interaction. pp. 338–351. ACM (2018)

23. Tigwell, G.W., Menzies, R., Flatla, D.R.: Designing for situational visual impairments:
Supporting early-career designers of mobile content. In: Proceedings of the 2018 on
Designing Interactive Systems Conference 2018. pp. 387–399. ACM (2018)

24. Wobbrock, J.O.: The future of mobile device research in hci. In: CHI 2006 workshop
proceedings: what is the next generation of human-computer interaction. pp. 131–134 (2006)



Chapter 7

Contrasting the Effects of Different
SIIDs on Mobile Interaction

This chapter provides comparison of the effects of the SIIDs: ambient noise, stress,
and dim ambient light on mobile interaction presented in Chapters 4, 5, and 6
respectively. Furthermore, this chapter highlights the importance of contrasting
the effects of these SIIDs on mobile interaction.

Table 7.1 presents mean values for the variables that are used to quantify
the effects of the SIIDs on mobile interaction performance: time taken to tap
targets and the size of the touch offset in the target acquisition task, time taken
to memorise and time taken to find a target icon in the visual search task, and,
finally, time per character entry and total error rate in the text entry task. Fur-
thermore, the table presents the magnitude of the impact of each of the SIIDs in
percentage when compared to their respective baselines. This direct comparison
of magnitudes is possible due to the fact that the protocol followed in the studies
presented in Chapters 4, 5, and 6 was identical. Moreover, each baseline condition
presented in Table 7.1 was controlled by excluding additional confounding factors
that could possibly lead to decrease in performance during mobile interaction.
In particular, we ensured that the baseline conditions for each of the studies
presented in Chapters 4, 5, and 6 were silent, warm, stress-free, and illuminated
with normal ambient light.

It is important to note that Table 7.1 was partially presented in the publication
presented in Chapter 5; however, it did not include the data for the effects of
dim ambient light. Hence, Table 7.1 in this chapter presents complete data on
the effects of SIIDs investigated within the scope of this thesis. However, this
chapter will mostly focus on and discuss the effects of SIIDs that were statistically
significant on mobile interaction performance as was established in the studies
presented in Chapters 4, 5, and 6.
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7.1 Target Acquisition Task

From Table 7.1 we can observe that particular SIIDs have a more pronounced
effect on mobile interaction performance during the target acquisition task. For
example, when exposed to the cold environment and dim light, participants
took longer time to tap on the targets as compared to the respective baselines,
e.g., warm environment and normal light. The effect of cold ambience can be
explained by the fact that cold temperature decreases the dexterity of extremities,
fingers in this case; hence, increases task completion time [24, 106]. According to
Table 7.1, dim ambient light also slowed down the target access time in the target
acquisition task. This effect can be explained by the reduced colour differentiation
abilities due to dim light [220] as well as reduced photoreceptors’ dopaminergic
activation [189], resulting in prolonged target access time and reduced accuracy.
Table 7.1 also demonstrates that under meaningful and meaningless speech con-
ditions, target acquisition time was longer as compared to the baseline condition
(silence). However, this effect was not statistically significant.

In contrast to cold ambience and dim light, under music conditions (both fast
and slow), the target acquisition time was significantly lower than compared to
the respective baseline (i.e., silence). These findings are in line with literature,
as it has been previously shown that music tempo influences people’s task com-
pletion time [44, 162, 166, 167]. In particular, research has shown that under fast
tempo music, people tend to complete their tasks, such as eating and drinking,
faster [162, 166, 167]. Nevertheless, according to literature, slow tempo music is
associated with slower task completion times [44]; however, our study demon-
strates that when listening to music with both slow and fast tempo, participants
were quicker to access targets as compared to the silent condition. We argue this
was due to the fact that in our study we used the same musical composition –
Bach’s “Brandenburg Concerto No. 2” sampled at a lower rate for slow tempo
music condition (60 bpm).

Furthermore, target acquisition time was faster when participants were expe-
riencing and recovering from the induced stress as compared to no stress baseline.
These findings were also in line with the existing literature [163], as it has previ-
ously been shown that due to stress, people experience anxiety [128] and rush
through their tasks [163]. Table 7.1 also shows that the effect of stress was the
most profound one on target access time compared to other SIIDs presented in
the table. This implies that when designing adaptive interfaces to accommodate
the effects of SIIDs on mobile interaction performance, from the ones presented in
Table 7.1, stress should be given a higher priority as its’ effect on target acquisition
task is more severe.
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Interestingly, regardless of the SIID type, we can observe in Table 7.1 that
when the target acquisition time decreases, the size of the offset grows; hence,
the accuracy of the touch drops. This can be explained by the fact that when the
participants favour speed of target acquisition task, they neglect the accuracy [150,
249]. In case of cold ambience, while the target acquisition time increases, the
accuracy drops due to the loss of dexterity in fingers [24, 106].

7.2 Visual Search Task

The visual search task had two components that were quantified within the scope
of this thesis: target icon memorisation and target icon search. The effects of
SIIDs on this mobile task was not as diverse as on the target acquisition task.
From Table 7.1 it can be observed that SIIDs had a significant effect on target
memorisation time, but not the target visual search time.

For example, in the study presented in [231], cold ambience had a significant
negative effect on target memorisation time as compared to the warm environ-
ment. This might be due to the fact that cold ambience can negatively affect
cognitive abilities of people [61]; however, the exposure to cold needs to be pro-
longed (at least 45 min [61]). This can partially explain why the authors did not
observe negative effect of cold ambience on visual search time [231].

Moreover, in the study presented in Chapter 4 and as demonstrated in Ta-
ble 7.1, we observed that under urban indoor noise, icon memorisation time
was significantly lower as compared to the memorisation time in the baseline
condition. This might be due to the fact that urban noise was not pleasant for
the participants to experience; hence, they tried to “escape” this condition and
rushed through the task (as mentioned in the qualitative data). Similarly, in the
study presented in Chapter 5, memorisation time was significantly shorter when
participants were experiencing and recovering the induced stress. We argue that
the reason behind such behaviour is again anxiety [128] that has shown to prompt
people to rush through the tasks [163].

Finally, according to Table 7.1, it can be observed that wearing sunglasses had
a negative effect on icon memorisation time, but not on icon search time. Similarly,
there was no significant effect of ambient noise and stress on visual search time.
This might be because the visual search task was not complex enough to observe
stronger effects of these SIIDs and further research is needed to fully understand
its impact on mobile interaction.
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7.3 Text Entry Task

From Table 7.1 it can be observed that the effect of outdoor urban noise had a
negative influence on participants’ performance during the text entry task as
demonstrated in the study presented in Chapter 4. In particular, the participants
took significantly longer time per character entry when exposed to urban outdoor
noise condition as compared to the silence. This might be because urban outdoor
noise is distracting in nature [19], and, hence, added to the cognitive load of the
participants who needed to concentrate to complete the text entry task [18]. As a
result, participants took longer time to complete the text entry task when being
exposed to urban outdoor noise condition.

Furthermore, Chapter 4 demonstrates the negative effect of meaningful speech
on participants’ performance during the text entry task: time per character entry
was significantly longer under the meaningful speech condition as compared
to the silent condition. Such behaviour can be explained by the distracting
nature of meaningful speech that also increases people’s cognitive load [261]. As
text entry task also requires concentration and occupies participants’ cognitive
load, presence of meaningful speech adds to the cognitive load and deteriorates
performance during the text entry task. Interestingly, this effect was not observed
in the meaningless speech condition on the text entry task possibly due to the
fact that it was easier for participants to ignore the meaningless speech, hence
decrease its’ effect on cognitive load, as they did not understand it. Finally, the
effect of both outdoor urban noise and meaningful speech was not observed on
the error rate during text entry. This might be due to the limited number of text
entry messages that did not let us observe statistical significance of these SIIDs
on the text entry task.

Finally, the effects of dim ambient light and the effects of stress on the text
entry task were not statistically significant in the studies presented in Chapters 5
and 6 neither in terms of time per character entry nor error rate. This might
be due to several reasons. First, the number of text entry messages within the
task was limited and, perhaps, was not sufficient enough to observe the effect
of these SIIDs (stress and dim ambient light) on text entry performance. Second,
the SIIDs were strictly controlled according to the protocol. It is possible that
under naturalistic conditions, the effects of both stress and dim ambient light
might be stronger than the ones presented in our studies. It is possible that
under stronger levels of stress and dim ambient light while completing more
complex text entry tasks, the effects of these SIIDs might be more profound and
remain to be investigated in future work. Overall, from Table 7.1 we can observe
that meaningful speech has a greater detrimental effect on the text entry task
performance; hence, meaningful speech should be given higher priority to ac-
commodate mobile interaction during text entry in circumstances with multiple
SIIDs being detected.
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In addition, the effects of cold ambience on the text entry task is not presented
in Table 7.1, as the authors of [231] did not investigate and did not report this data
in their study. Hence, it is not applicable to review the effects of cold ambience
on text entry performance within the scope of this thesis. Future work could
further investigate the effects of different ambient temperatures on text entry
performance.

7.4 Implications for Design and Summary

Our findings demonstrate that different SIIDs have different effects on mobile
interaction tasks. This knowledge could be considered when designing detection
mechanisms or adaptive user interfaces for smartphones and other ubiquitous
technology that require mobile interaction in presence of SIIDs. For example, to
reduce the effects of cold, stress, and ambient noise on target acquisition task
performance, mobile interfaces could increase the size of the targets or actuate
input techniques directed to improve accuracy, presented in literature [26,37,116].

Moreover, as smartphones and other ubiquitous devices come equipped with
a number of sensors, both contextual, sensor, and input data can be used to detect
the presence of SIIDs. For example, built-in microphone of the device could be
used to detect noise-induced SIID, while built-in ambient light sensor could be
used to detect ambient light-induced SIIDs.

Furthermore, our findings could be used to suggest or avoid using certain
input techniques when particular SIIDs are detected. For instance, the interface
could avoid using voice assistance in the presence of ambient noise; however,
it could be a preferred input technique when cold-induced SIIDs are sensed. In
addition, the interface could potentially warn the user about possible frostbite
risks if long exposures to cold has been recorded by the device [231]. Similarly, to
decrease the effect of meaningful speech on the text entry task, the interface could
launch adaptive keyboard to improve user experience and minimise errors [70].

To summarise, these comparisons enhance our understanding of the effects of
different SIIDs on mobile interaction, and therefore, accumulate knowledge on
SIIDs research and contribute to the research agenda. This knowledge can also
assist researchers and designers in developing mechanisms for accommodating
SIIDs when a combination of them is present and when particular tasks are being
completed.
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Table 7.1: Comparison of the Effects of SIIDs against Respective Baseline
Baseline Situational Impairments

Mean (SD) Warm Silent No stress
Normal
Light

Cold
Music
Fast

Music
Slow

Urban
Indoor

Urban
Outdoor

Speech
Meaningful

Speech
Meaningless

Stress
Post-Stress
Recovery

Dim
Light

Wearing
Sunglasses

Time to tap
a circle, ms

593.00
(137.89)

591.84
(125.07)

538.68
(127.58)

485.00
(103.00)

603.00 *
+ 1.7%

577.76 *
- 2.4%

574.15 *
- 3.0%

583.56 *
- 1.4%

573.56 *
- 3.1%

592.81
+ 0.2%

609.38
+ 3.0%

534.77 *
- 0.7%

520.18 *
- 3.4%

495.00 *
+2.27%

498.00 *
+2.89%

Offset
size, px

41.34
(40.89)

39.38
(35.26)

46.47
(25.57)

47.70
(25.80)

42.66 *
+ 3.1%

42.95
+9.1%

42.11 *
+ 6.9%

41.06
+ 4.3%

40.91
+ 3.9%

42.90
+ 8.9%

39.47
+ 0.3%

49.14 *
+ 5.7%

50.20 *
+ 8.0%

49.50 *
+3.77%

46.70
-2.09%

Time to
memorise
an icon, ms

815.00
(150.15)

748.76
(253.89)

800.51
(331.15)

719.00
(290.00)

854.00 *
+ 4.8%

737.71
- 1.5%

745.15
- 0.5%

712.11 *
- 4.9%

743.56
- 0.7%

753.20
+ 0.6%

738.90
- 1.3%

714.52 *
- 4.6%

702.31 *
- 12.3%

703.00
-2.25%

744.00
+3.47%

Time to
find an
icon, ms

1632.24
(1235.27)

1587.74
(871.95)

1602.45
(1315.82)

1499.00
(827.03)

1942.46
+ 19.0%

1564.70
- 1.4%

1753.19
+ 10.4%

1543.12
- 2.8%

1633.15
+ 2.9%

1637.54
+ 3.1%

1520.99
- 4.2%

1496.50
- 6.6%

1506.38
- 6.0%

1477.07
-1.46%

1513.00
+0.93%

Character
entry rate,
ms/char

n/a
454.39

(219.95)
560.88

(173.96)
532.20
(121.00)

n/a
488.11
+ 7.4%

485.14
+6.8%

480.96
+ 5.8%

523.89 *
+ 15.3%

539.82 *
+ 18.8%

508.99
+ 12%

547.16
- 2.4%

495.83
- 11.6%

519.01
-2.48%

527.00
-0.94%

Total error
rate, %

n/a
7.54

(7.72)
7.46

(6.63)
5.55
(4.81)

n/a
7.45

- 1.2%
7.38

- 2.1%
8.54

+ 13.3%
8.22

+ 9.0%
7.09

- 6.0%
7.07

- 6.2%
10.50

+ 40.8%
9.40

+ 26.0%
4.94
-10.99%

5.06
-8.83%

* indicates statistically significant effect



Chapter 8

Sensing Cold-Induced SIIDs

Previous work has already quantified the effects of cold environments on smart-
phone interaction [76, 231]. Cold has been shown to have a negative effect on
fine-motor performance during mobile interaction due to decreased dexterity and
stiffness of the muscles [76]. In particular, participants took significantly longer
time and were less accurate when completing target acquisition tasks under cold
ambience when compared to a warm environment. The study demonstrates
the importance of accounting for cold-induced SIIDs that might impair mobile
interaction [231].

This chapter presents our work where we propose a sensing mechanism to
detect cold-induced situational impairments using an off-the-shelf smartphone
(RQ3). Current smartphones are equipped with different sensors that can be
used to detect the presence of different situational impairments. For example, the
ambient light sensor can be used to detect ambient light-induced SIIDs, while
ambient noise-induced situational impairments can be detected with the help
of the device’s built-in microphone. Internal SIIDs, such as stress, can be de-
tected via wearable devices. For example, physiological data collected from
wearable sensors – HRV and EDA [161] – can indicate the presence of stress.
Nevertheless, despite the established adverse effect of cold-induced situational
impairments [231] on mobile interaction, the researchers did not propose a sens-
ing mechanism to detect them.

This is particularly challenging, as there are several factors (e.g., context,
location, interaction duration) that need to be accounted for when designing a
sensing mechanism to detect cold-induced SIIDs. For example, a general weather
forecast cannot be used for this purpose as while indoor/outdoor detection
mechanisms for smartphones exist [7], exposure to cold conditions may vary for
a myriad of reasons (e.g., the user is wearing gloves or is located in an somewhat
environmentally shielded outdoor location).

Our work suggests using the smartphone’s built-in battery temperature sensor
to infer changes in users’ finger temperature. This approach is fairly reliable as
it demonstrates a similar trend in behaviour between the smartphone battery
temperature, and users’ finger temperature in cold and warm environments:
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decreases in the cold ambience, and increases in the warm environment. In
particular, we found a high correlation between these two variables (r = 0.86).
Our findings contribute towards building sensing mechanisms to detect cold-
induced SIIDs using an off-the-shelf smartphone. The details of our approach
can be found in the attached publication in Section 8.1.
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1 INTRODUCTION 
Cold ambience is known to affect fine-motor skills during interaction with mobile devices. This is due to the 
fine-motor dexterity loss caused by drops in finger temperature [6,13]. However, while previous work has 
shown that finger temperature is an important consideration when designing mobile phone applications, no 
reliable way of inferring finger temperature in situ has been proposed without the need for external 
measurement devices (e.g., skin thermistors). 

Future smartphones may come with embedded environmental temperature sensor to gauge ambient 
temperature, but this is still not the case today. In our work, we make creative use of existing smartphone 
sensors to gauge finger temperature. Specifically, we investigate if finger temperature can be inferred from the 
smartphone’s battery temperature. The literature contains a growing list of examples where smartphone sensors 
originally intended for a particular function can actually be appropriate for a wholly different use case. For 
example, researchers have shown how to transmit data using the magnetometer [9], or determine social context 
through Bluetooth traces [2]. 

Here we demonstrate that it is possible to leverage data on smartphone battery temperature to infer 
fluctuations of a user’s finger temperature during interaction. We show a significant correlation between battery 
and finger temperature, and as such one can be used to infer the other. Our method can infer changes in users’ 
finger temperature using off-the-shelf smartphones without the need for additional sensors or hardware. 

2 RELATED WORK 

2.1 Environmental Sensing Using Smartphones 
Previous work has described the use of smartphone sensors to better understand surrounding weather 
conditions. For instance, Mass & Madaus [10] discuss the use of smartphone pressure sensors for surface 
pressure observations. They describe that a fine-grained network of smartphone users would allow for high-
resolution weather prediction as pressure readings are “not influenced by characteristics of the underlying surface, 
as are temperature and wind” [10], and therefore readings are not influenced by different contexts (e.g., shade, 
urbanisation). 

Overeem et al. [12] also suggest that smartphones can be used as an effective instrument to study 
environmental and climate changes. Sensor data such as air humidity, air pressure, and air temperature can be 
used for data assimilation in weather prediction models, water management, and urban planning [12]. More 
relevant to our work, they report the analysis of a six-month dataset of 2.1 million battery temperature readings 
from eight major cities collected using the OpenSignal1 Android application. They found that daily battery 
temperature was strongly correlated with the observed daily air temperature (r = 0.82) [12]. In addition, 
literature shows a substantial impact of ambient temperature on human’s body temperature, particularly for 
extremities (e.g. fingers, toes) [11]. These findings provide us with strong motivation towards investigating the 
possibility of inferring changes in user finger temperature based on changes in smartphone battery temperature. 

2.2 Extending Smartphone’s Capabilities 
The literature also contains examples on the use of smartphones in combination with specialised devices for 
environmental sensing. A combination of general smartphone sensors and purpose-made (add-on) sensors 
allows for the collection of sensor data not feasible with a standalone smartphone. By distributing 8000 small 
add-ons for regular smartphones among the Dutch population, Snik et al. [14] deployed a ‘citizen science’ 
experiment to carry out aerosol measurements of high temporal resolution. “The optical design of iSPEX uses the 
smartphone camera as the detector, and the iSPEX add-on produces a spectrum of the light that entered the slit […]” 
[14]. 

                                                                    
1 http://opensignal.com 
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In a different project, researchers developed an attachment for smartphones to crowdsource the collection 
of pollution data [8]. Combining this data with the GPS sensor of the mobile phone allowed for a more detailed 
understanding of urban air pollution. 

Aram et al. [1] monitored changes in temperature and humidity using a Bluetooth-based acquisition system. 
The system consisted of device with a built-in temperature and humidity sensor, and a microcontroller 
wirelessly transmitting the climatic parameters to a receiver via Bluetooth. The device was left in a climatic 
chamber to monitor the temperature drop from 25 ºC down to -20 ºC followed by a temperature rise back to 25 
ºC, as well as a constant humidity level. The results show that temperature values obtained by the system were 
consistent with the temperature values inside the climatic chamber, but not for humidity values. They suggest 
that their approach might be useful to observe climate conditions for small environments, such as laboratories, 
home rooms, or medical spaces, and to trigger alarms when these conditions change [1]. 

2.3 Impact of Situational Impairments on Smartphone Use 
Previous work suggests that smartphone interfaces should be adapted when used under various situational 
impairments, such as dynamic state of the phone [5], ambient light and noise [16], movement [4], and cold 
ambience [6,13]. A number of different solutions have been developed to overcome these situational 
impairments when interacting with a mobile device. For example, Goel et al. [4] suggest adapting the keyboard 
interface when walking is detected to improve typing experience. This adaptive interface reduced errors and 
increased typing speed. Moreover, Wobbrock [16] argues that a better understanding of situational impairments 
can in addition contribute to improved accessibility and adaptive user interfaces. Furthermore, he considers the 
possibility that solutions designed for people with physical impairments can be applied to those with situational 
impairments during mobile interaction (e.g., finger arthritis and people with cold fingers [16]). 

On the topic of situational impairments caused by cold temperatures, previous work has shown that user 
performance when completing tapping tasks on a smartphone is affected by finger temperature. As a result of 
this finding, the researchers suggest adding finger temperature as a parameter in Fitts’ Law modelling [6]. 
Furthermore, Sarsenbayeva et al. [13] show that precision and quickness are adversely affected by cold 
temperatures. While the researchers provide design suggestions for mobile device interface adaptation in cold 
environments, they do not describe how user exposure to cold ambience can be detected in a naturalistic setting 
(i.e., without temperature sensors attached to the user’s fingers). Hence, we extend previous work by proposing 
a method to determine changes in finger temperature by considering the smartphones’ battery temperature. 

3 STUDY 

We conducted two experiments to 1) assess the effect of a cold environment on the battery temperature of 
several smartphone models, and 2) investigate the relationship between smartphone battery temperature and 
human finger temperature. 

3.1 Experiment 1: Device Comparison 

We conducted a comparative study of changes in battery temperature over time using multiple handsets. Our 
objective was to investigate whether different phones and batteries behave similarly in cold settings. We 
considered four different smartphones that vary in manufacturer, size, battery capacity, and other factors (see 
Table 1). Given the wide range of characteristics in our selected phones, we argue that they provide a good 
representation of existing models in the market. 

 

 



98:4 • Z. Sarsenbayeva et al. 

PACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 3, Article 98. Publication date: September 2017. 

Table 1. Specifications of smartphones used in our study. 

 Motorola  
Moto G3 

Samsung 
Galaxy S4 
Mini 

Huawei  
Nexus 6P 

LG  
Nexus 5X 

Dimensions 
(H x D x W) 

142.1 x 72.4 x 
11.6 mm 

124.6 x 61.3 x 
8.49 mm 

159.3 x 77.8 x 
7.3 mm 

147.0 x 72.6 x 7.9 
mm 

Weight 155 g 107 g 178 g 136 g 
Screen size 5.0” 4.3” 5.7” 5.2” 
Body material Polycarbonate Polycarbonate Metal Polycarbonate 
Battery type Li-Ion Li-Ion Li-Po Li-Po 
Battery capacity 2470 mAh 1900 mAh 3450 mAh 2700 mAh 
Removable battery No Yes No No 

 
The experiment took place in a medical testing facility, in two separate rooms with independent climate 

controls. As previous work identified the effect of cold ambience on performance during mobile interaction [13], 
we replicated the protocol to determine if under the same conditions we could use battery temperature to infer 
finger temperature. Namely, we set the cold room temperature to -10 ºC, with wind velocity below 0.1 m/s and 
70-75% humidity, while the warm room was set to 20 ºC. All four smartphones were rotated between these two 
spaces to measure fluctuations in battery temperature: 14 minutes in cold temperature, 14 minutes in room 
temperature, 14 minutes in the cold temperature, and again 14 minutes in room temperature. We developed a 
custom Android application to record smartphone battery temperature for each device every 30 seconds during 
the experiment. Due to its power saving features, Android only allows polling of battery related data when an 
event is registered by the device’s battery. Therefore, we ensured the triggering of an event on smartphones’ 
battery every 30 seconds by plugging and unplugging the devices into an electrical outlet to collect battery 
temperature measurements. 

 
3.1.1 Results. Fig. 1 shows the battery temperature fluctuation for each smartphone used in Experiment 1. 

Vertical lines represent the start of the experiment in each of the rooms. We calculated the Pearson product-
moment correlation coefficient between each device to assess the relationship between the measured battery 
temperatures. A statistically significant positive correlation was observed between the battery temperatures of 
all four devices (Table 2). 

 

Fig. 1. Smartphone battery temperature change. 
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Table 2. Pearson correlation coefficients between battery temperatures of the used smartphones. 

 Motorola 
Moto G3 

Samsung 
Galaxy S4 Mini 

Huawei  
Nexus 6P 

LG  
Nexus 5X 

Motorola Moto G3 - 0.96 0.98 0.92 
Samsung Galaxy S4 
Mini 

0.96 - 0.99 0.88 

Huawei Nexus 6P 0.98 0.99 - 0.91 
LG Nexus 5X 0.92 0.88 0.91 - 

3.2 Experiment 2: Finger & Battery Temperature 

In this experiment, we investigate if smartphone battery temperature and human finger temperature co-vary 
when exposed to changing ambient temperature. The experimental design was adopted from previous work 
[13]. We recruited 24 participants for our experiment through social media and mailing lists. We controlled for 
gender by having an equal distribution of males and females. All participants had lived in cold climates (e.g., 
Scandinavia) for more than six months and owned a smartphone for at least one year. We also controlled 
participants’ clothing by instructing them to wear a single layer of trousers and top garments on the day of the 
study and providing them with additional winter attire. 

After participants were briefed on the purpose of the study, we asked them to sign a consent form if they 
agreed to the study’s specifications. Participants were then instrumented with thermal sensors attached below 
the nails of their index finger and thumb on the back of their dominant hand. Thermal data was logged every 1 
second using a mobile battery-powered Grant Squirrel meter/logger series 1000 (Fig. 2), allowing us to measure 
finger temperature, as described in [6,13]. We chose to only instrument these two fingers as they are the ones 
most likely to be used during one-handed or two-handed interaction with a smartphone. Participants did not 
wear gloves during the experiment and were asked to not place their hands inside of their pockets. The 
experiment took place in the same medical facility and rooms as Experiment 1, using the same room 
temperatures. Participants were asked to wear additional winter attire provided by us when exposed to the cold 
chamber (Fig. 2). Following the design of Sarsenbayeva et al. [13], participants alternated between the two rooms 
(cold-warm-cold-warm), and we recorded both battery and finger temperature every 30 seconds. During the 
study, participants were asked to use a provided smartphone to complete target acquisition tasks for 4 minutes 
in 3 different instances (at 1:00, 6:00 and 11:00, with a 1-minute break in between) for each condition (cold/index, 
cold/thumb, warm/index, warm/thumb). The hand posture was randomised and counterbalanced. We avoided 
using colder temperatures in our study (i.e., below -10 ºC) to ensure the wellbeing of the participants. The 
experimental design was approved by the ethics committee of our university. 

3.2.1 Results.  A Pearson product-moment correlation coefficient was calculated to assess the relationship 
between participants’ finger temperatures (index and thumb) and the phone’s battery temperature. A positive 
correlation was observed for both fingers (index: r = 0.86, p < 0.01; thumb: r = 0.85, p < 0.01). Fig. 3 shows the 
changes in finger temperature and the smartphone’s battery temperature throughout the experiment for each 
participant. Furthermore, our results show that participants’ finger temperature decreased on average 0.73 ºC 
per minute in the cold room, and increased on average 0.79 ºC per minute in the warm room. 
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Fig. 2. Left: Grant Squirrel meter/logger (series 1000) and a participant’s hand with thermal sensors attached. Right: 
Participant in the cold chamber and in the warm room. 

 

Fig. 3. Participants’ finger temperature and smartphone battery temperature. 

4 DISCUSSION 

4.1 Inferring Cold-Induced Situational Impairments 
Previous work has shown that ambient temperature is highly correlated with smartphone battery temperature 
[1,12], and that ambient temperature has a significant impact on body temperature, particularly the extremities 
(e.g. fingers) [11]. In our work, we investigate the missing link regarding the relationship between finger 
temperature and smartphone battery temperature (Fig. 4). Our results demonstrate that smartphone battery 
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temperature is highly correlated with users’ finger temperature (index: r = 0.86, thumb: r = 0.85) and can 
therefore be used to infer potential cold-induced situational impairments during mobile interaction for both 
interaction modes (one-handed and two-handed). 

Our work demonstrates that changes in smartphone battery temperature along with other factors (e.g., user 
input pattern) can be leveraged to signal the need to adapt the smartphone for cold environment. In addition, 
we show that this can be achieved without adding any additional sensors to the smartphone. Our approach of 
detecting a situational impairment corresponds to the method used by Goel et al. [4], where an accelerometer 
(a general-purpose sensor on most smartphones) was used to detect and reduce situational impairments induced 
by walking. 

While previous work was able to achieve high accuracy when measuring device surface and screen 
temperature through additional sensors [3], an approach with add-on sensors aimed at measuring finger 
temperature is currently not feasible in real world situations. This is a challenge for researchers or interface 
designers who wish to adapt the interaction and interface when cold-induced situational impairments are 
detected. Our method shows that off-the-shelf smartphones can be used to detect users’ finger temperature, 
thus providing a practical way to detect and accommodate for cold-induced situational impairments. 

 

Fig. 4. Smartphone battery temperature relation to ambient temperature and finger temperature. 

4.2  Method Applicability 
Previous work has argued that cold environments cause significant deterioration of fine-motor performance 
when interacting with the mobile device [6,13]. To improve fine-motor performance during mobile interaction, 
it is important for the device to be aware of the changes in a user’s finger temperature and adapt its interface 
accordingly. Here we present an unobtrusive method to detect these cold-induced situational impairments 
during mobile interaction. 

In practice, our method can be used as follows. When a user initiates interaction with the device, the device 
registers its current battery temperature. Subsequent decreases in battery temperature while the user is still 
interacting with the phone can then be used to infer drops in finger temperature. Once a certain threshold of 
finger temperature decrease has occurred, the smartphone interface should then adapt accordingly or provide 
warnings to the user. It is important to note that for our method to work, finger temperature inference can only 
occur during interaction. When not using their phone, users might put their hands in their pockets or warm up 
their hands through other means. 

Finally, previous work has shown that a decrease of just a few degrees Celsius can affect mobile interaction 
performance [6]. Here, we show that participants’ finger temperature dropped on average 0.73 ºC per minute 
under our cold exposure conditions. However, at temperatures lower than -10 ºC, the cooling rate of the fingers 
would be accelerated. This means that decreases in mobile interaction performance would occur in increasingly 
shorter spans of time. 

Finger
temperature

Ambient
temperature

Battery
temperature

Our study
(r = 0.86)

Overeem et al. [12]
 (r = 0.82)

Montgomery et al. [11]

Overeem et al. [12]
 (r = 0.82)
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4.3 Limitations 
This study has several limitations. While the choice for a constant room temperature is well motivated 
(temperature hardly changes during a typical session of smartphone usage [15]), we were limited in the actual 
temperature level imposed on our participants due to safety concerns. While outdoor temperatures in some 
parts of the world reach much lower temperatures than -10 ºC, we decided not to study more extreme scenarios. 
In addition, we have not been able to test a wider range of smartphone models due to both time and financial 
constraints. However, the range of smartphones used in our study (Table 1) does show a considerable level of 
diversity. This, combined with the high correlation in our results, provides us with sufficient confidence that 
our results hold true for a much larger selection of smartphone devices. 

Further, participants were instructed to not wear gloves or warm their hand by any other means, unlike in 
naturalistic settings where they could wear touchscreen gloves to interact with their devices or warm their 
hands inside of their pockets. This was by design as we wanted to: 1) avoid touch inaccuracies during mobile 
interaction, and 2) observe steady finger temperature drop. 

Finally, we did not run compute-intensive applications on the devices during our experiment as we chose to 
focus on more typical interactions that are more likely to occur in outdoor cold environments. 

5 CONCLUSION 
In this study, we demonstrate that changes in smartphone battery temperature can be used to infer changes in 
users’ finger temperature. By doing so we also filled an important gap in the literature. While previous work 
has identified a relationship between ambient temperature and finger temperature, and between ambient 
temperature and battery temperature, our work is the first to establish a relationship between finger temperature 
and battery temperature.  This is an important finding as it shows that cold-induced situational impairments 
can be predicted using off-the-shelf smartphones. This information can then be used to adapt mobile interfaces 
to overcome cold-induced situational impairments or simply to provide warnings to the user on over-exposure 
to cold environments. 
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Chapter 9

Discussion

This chapter contemplates on the research contributions presented in Chap-
ters 4, 5, 6, and 8 of this thesis in relation to existing literature and answers
research questions defined at the beginning of the thesis. We conclude this chap-
ter with the limitations faced by the studies included in this thesis and offer a
pathway for future work to be conducted within this research area.

9.1 RQ1. What are the effects of different SIIDs on

mobile interaction?

This thesis demonstrates that different SIIDs have different effects on mobile
interaction. We also show that the effects of SIIDs varied depending on the
smartphone tasks.

9.1.1 Ambient Noise

In Chapter 4 we demonstrate that distinct types of ambient noise affect mobile
interaction performance in different ways. For example, music with both fast
and slow tempo decreased participants’ target access time; hence, accelerated
their performance in the target acquisition task. Regardless this improvement in
target access time, participants were significantly less accurate when accessing
targets as the touch offset size increased under both music conditions when
compared to the baseline condition. These findings are in line with literature
that has previously shown that although music accelerates task performance
speed, this improvement comes at a cost of reduced accuracy [52]. However,
the effect of music was limited to the target acquisition task only, and it did not
have a statistically significant effect on neither the visual search nor the text entry
tasks. In addition, the qualitative data from this study showed that music was in
general positively perceived by the participants and added a “fun factor” to the
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task. Participants felt that under the music condition they were quicker tapping
on the targets as they wanted to be “in line with the music rhythm” (12 out of 24
participants).

We then show that urban noise had a detrimental effect on mobile interaction
performance. Similar to music condition, under both urban indoor and outdoor
noise types, participants were quicker to tap targets; however, unlike in the music
conditions, this improvement in speed did not affect their accuracy. Furthermore,
when exposed to urban indoor noise condition, participants also took significantly
less time to memorise a target in the visual search task. However, such an effect
of urban outdoor noise condition was not observed. In addition, neither of urban
indoor and outdoor noise conditions did not have an effect on visual search time.
Nevertheless, we observed a negative effect of urban outdoor noise on the text
entry task, as the time per character entry was significantly longer as compared to
the silent condition. These findings can be explained by the distracting nature of
urban noise [19]; in order to escape these unpleasant conditions participants were
quicker to complete these tasks. Moreover, as the outdoor urban noise increases
cognitive load [18], it affected participants’ performance during the text entry
task; hence, they required more time to concentrate to type the text. This finding
was also confirmed with the qualitative data. The majority of the participants
(13 out of 24) mentioned that they were “distracted” and “annoyed” by the urban
noise conditions and could not concentrate on the smartphone tasks. In fact, the
participants mentioned that their perceived performance in both the visual search
and text entry tasks was negatively affected by the urban noise conditions; hence,
supporting our quantitative findings.

Finally, we demonstrate that the effects of speech were limited to the text
entry task; but neither the target acquisition nor the visual search tasks. In
particular, we show that when listening to the meaningful speech (i.e., English),
participants took significantly longer time per character entry compared to the
silent condition. This is due to the distracting nature of meaningful speech [19]
and its negative effect on cognitive performance [17, 261]. As the text entry task
involves cognitive abilities of people [229], it was affected by the additional load
caused by the meaningful speech. Interestingly, meaningless speech did not have
a significant effect on the text entry performance, which shows that participants
could ignore the presence of the meaningless speech due to their inability to
understand the language presented in this condition (i.e., Kazakh). Quantitative
data conforms with the qualitative findings from the study. Our participants
(13 out 24) mentioned that meaningful speech was distracting them, hence it
was more difficult to focus on the text entry task. In addition, our participants
mentioned that the meaningful speech also affected their performance on the
visual search task. However, our quantitative data did not support this statement.
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9.1.2 Stress

Chapter 5 presents our findings on the effects of stress on mobile interaction per-
formance. Our results show that stress negatively affected the target acquisition
task; however, its’ negative effect on the visual search and the text entry task was
not observed. We demonstrate that participants took significantly less time to tap
targets, and their accuracy was significantly lower when they were experiencing
stress. These findings are in line with literature that demonstrates that under
stress people tend to rush through their tasks and in general have higher error
rates due to anxiety [163].

Qualitative data from this study shows that stress affected not only partici-
pants mobile interaction performance, but also physical and emotional well-being.
The majority of the participants stated that they were more jittery when experi-
encing stress. This might have been a reason for reduced accuracy in the target
acquisition task. Moreover, the majority of our participants (19 out of 24) said
they wanted to complete the smartphone tasks as soon as possible as they did
not feel comfortable and wanted to “escape” the situation. This also contributed
to their reduced accuracy in the target acquisition task, even though we did not
observe a significant negative effect of stress on the visual search and text entry
tasks.

9.1.3 Dim Ambient Light

Chapter 6 presents our results on the effects of dim ambient light on mobile
interaction performance. Our study shows that dim light has a negative effect on
the target acquisition task as it increases the target access time and increases the
touch offset size as compared to the normal light condition. This effect of dim
ambient light might be due to the decreased colour-differentiation abilities [220]
and increased difficulty to see the content of the screen in dark environments [77].
Chapter 6 further demonstrates that wearing sunglasses had a negative effect on
the visual search task, as the participants were significantly slower memorising
a target icon when compared to a normal light condition. Previous work has
shown that low illuminance decreases search speed in reading task [139], hence
as sunglasses dim vision perception, our results agree with previous work [139].

Qualitative data of this study shows that participants (8 out of 28) felt the
negative effect of dim ambient light and wearing sunglasses on their perceived
smartphone interaction performance in the target acquisition task as they men-
tioned they took longer time and were less accurate to tap the targets under dim
light and when wearing sunglasses. This statement is in line with our quantitative
data. Interestingly enough, the majority of our participants (17 out of 28) did not
feel the negative effect of dim ambient light on their time to memorise a target
icon in the visual search task, even though our quantitative data shows the op-
posite of this statement, as we found that while wearing sunglasses participants
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took significantly longer time to memorise an icon. Furthermore, the participants
mentioned that it was difficult to find target icons (10 our out 28) and type the
text (8 out of 28) under the dim light and when wearing sunglasses. Nevertheless,
these statements were not supported via our quantitative data and we did not
establish the effects of dim ambient light on mobile interaction performance in
the visual search and the text entry tasks.

9.1.4 Summary

The above-mentioned studies have quantified the effects of ambient noise, stress,
and dim ambient light on mobile interaction performance. Our findings show
that there are effects in both directions, e.g., either improving or decreasing
performance on mobile interaction and each SIID has an individual effect on
each of the smartphone tasks. These effects are summarised in Table 7.1. The
effects of SIIDs are different due to several factors including but not limited to the
physiological and mental response of the human body to SIIDs. For example, in
cold ambience, body temperature drops, including the temperature of the extrem-
ities, as it is a natural physiological response [170]. With the drop in temperature,
the muscle stiffness grows and the dexterity drops [91]. Hence, cold-induced
SIIDs will affect mobile tasks requiring finger dexterity more compared to other
SIIDs that do not affect motor performance. Furthermore, we can observe from
Table 7.1 that under stress, participants were significantly quicker to complete
target access and memorisation in visual search task. This is due to the fact that
stress affected our participants mentally and caused anxiety [128], which in its
turn decreased task completion time as has been shown in prior research [163].
Having shown the impact of these three SIIDs on different types of mobile tasks,
next we discuss how these effects compare to each other.

9.2 RQ2. How do these effects compare to each

other?

A significant amount of research has been conducted to investigate the effects
of different SIIDs on mobile interaction; however, the majority of the studies
were conducted in an ad-hoc fashion and research on SIIDs lacks systematic
investigation. This results in the inability to draw fair comparisons between
the effects of different SIIDs, and, hence, establish a consensus within the SIIDs
research area. Therefore, in order to draw a fair comparison between the effects
of different SIIDs on mobile interaction several factors need to be taken into
consideration.

First, it is necessary to use identical measure variables to observe the effects
of SIIDs on mobile interaction. This can be achieved by using the same tasks
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across multiple studies and measuring the same variables within the task. For
example, this thesis presents how three smartphone tasks: target acquisition,
visual search, and text entry were used across the different studies. Despite
the difference between the SIIDs, these smartphone tasks measured the effects
of the SIIDs on mobile interaction performance in terms of target access time
and touch offset size (target acquisition task), memorisation time and visual
search time (visual search task), time per character entry and total error rate
(text entry task). This consistency among measure variables was the first step
to provide a fair comparison between the effects of different SIIDs on mobile
interaction performance. In addition, it is necessary to provide the participants
with extensive training to avoid any possibility of sequence effects.

Then, there has to be a consistency within the protocol of the studies. Namely,
each of the studies require having a baseline condition which allows observ-
ing participants’ behaviour when SIIDs are not present. This further provides
with an opportunity to compare the effects of different SIIDs respective to their
baseline. Most importantly, the effects of SIIDs should not be compared directly
to each other, but rather indirectly as a percentile difference to the respective
baseline. Performing comparison between the SIIDs according to their percentile
growth/drop respective to their baseline, reduces the presence of possible bias
that can be caused by the variation in the participants sample.

This comparison empowers our understanding in terms of the magnitude of
the effects for each SIID, as we can anticipate which SIID has a more prominent
effect on mobile interaction performance. This knowledge can then facilitate
building appropriate sensing, modelling, and adapting mechanisms to accom-
modate the effects of SIIDs, perhaps giving a preference to the most prominent
one for a given task. Designing mobile technology that addresses user needs
appropriate to their contextual factors can improve people’s user experience and
ensure that they receive procured information in a timely manner [247].

9.3 RQ3. How can mobile devices sense the onset of

cold-induced SIIDs?

HCI and UbiComp research has demonstrated that smartphone sensors can be
utilised to detect context [2, 56, 240], surrounding environment [198], and activity
recognition [8, 252, 265]. We followed a similar approach and used a smartphone
sensor to sense cold-induced SIIDs. In particular, Chapter 8 presents our work
on how we utilised smartphone’s built-in battery sensor to detect if a user is
experiencing cold-induced SIIDs.

Our findings demonstrate that smartphone battery temperature highly corre-
lates with participants’ finger temperature (r = 0.86 and r = 0.85 for index finger
and thumb respectively). Both smartphone battery temperature and participants’
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finger temperature dropped in a cold environment and increased in a warm set-
ting. Hence, smartphone battery temperature can be an estimate to user’s finger
temperature and a drop in temperature can indicate that the user is exposed to
cold setting and potentially experiencing cold-induced situational impairments.

The detection mechanism might work in the following way. The device’s
battery temperature should be registered by the OS at the moment of the first
interaction with the device and needs to be recorded at particular time intervals.
In case when the consistent temperature drop is observed and reached a specific
threshold, the device can adapt the interface to accommodate cold-induced SIIDs
and warn the user about possible overexposure to cold temperatures. Moreover,
mechanisms to model or predict how a user interacts with their mobile phone
and for how long [108, 125, 144, 258] can further assist with effective adaptations.

We also argue that the detection mechanism can be improved if smartphone’s
battery temperature is used in combination with user input (e.g., performance
during target acquisition task). Nevertheless, it is important to account for
external factors that might be present during detection time. For example, a user
might be wearing capacitive gloves while interacting with the smartphone, hence
diminishing the accuracy of detection. However, we argue that a smartphone
should be able to distinguish between the interaction of the user when wearing
capacitive gloves and when not.

9.4 Future Directions for SIID Research

As Wobbrock et al. argue in their work [273], the concept of disability caused by
the context is applicable to everyone. Therefore, conducting research on SIIDs
can benefit users of all abilities. For example, if technology is designed to be
used in a one-handed interaction mode [37, 72] to accommodate SIIDs caused by
encumbrance [183, 186], it can also be beneficial for a user who has only one arm.

Within the scope of this thesis, SIIDs such as ambient noise, stress, and dim
ambient light have been investigated to quantify their effects on mobile interac-
tion. These SIIDs have been investigated independently and under controlled
laboratory settings. These can be limitations of the research conducted in this
thesis; however, these experimental designs were necessary for several reasons.
First of all, as the effects of the above-mentioned SIIDs have not been established
on mobile interaction, it was necessary to exclude any confounding factors that
might potentially influence and add to the effects of each of the SIIDs on mobile
interaction. Therefore, having strictly controlled laboratory settings helped us
to avoid any potential additional factors which would question reliability of our
results.

Now that we have established the effects of these SIIDs on mobile interaction,
it is time to take the research on SIIDs to the next step. For example, future
research could examine the effects of combined situational impairments on mobile
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interaction, particularly because it is common for users to interact with mobile
devices while being exposed to multiple SIIDs, e.g., under bright light while
walking on the street in winter in Northern Europe. Furthermore, future research
on SIIDs should also be conducted in the wild to maximise the realism of the
surrounding context. This could potentially bring new insights to the research
agenda as new behaviour of people could be observed under realistic conditions
that cannot be observed in laboratory settings.

Furthermore, there are other SIIDs that have been acknowledged and recently
summarised [269]. Many of them include but are not limited to behavioural
(e.g., operating machinery), environmental (e.g., difficult terrain, confinement,
extraneous force), attentional (e.g., diverted gaze, multitasking, distraction), af-
fective (e.g., fatigue, fear, intoxication), social (e.g., laws, crowds, social norms),
and technological (e.g., lack of power and/or connectivity) SIIDs and remain
underexplored as their effects on mobile interaction is unknown [269]. It is crucial
to build a scientific understanding of the underexplored SIIDs, in order to be
able to progress further in terms of building sensing, modelling, and adapting
mechanisms for these SIIDs [269].

If the effects of underexplored SIIDs (e.g., fear or difficult terrain) on mobile
interaction performance are shown to be similar to the ones that have already
been studied (e.g., stress), then design guidelines for user interfaces to accom-
modate explored SIIDs could also be applied to address underexplored SIIDs.
Furthermore, as researchers in accessible computing have already emphasised
the link between building design solutions for people with disabilities and people
in disabling situations [269], the broader knowledge on SIIDs and the ways to
accommodate them enables potential solutions for broader range of accessible
technology to assist people with permanent disabilities. Furthermore, it might
be more beneficial to run lab studies to understand the effects of these afore-
mentioned underexplored SIIDs before conducting in-the-wild studies to avoid
exhaustion of resources (e.g., human, financial, technological).

Wobbrock et al. defined SIIDs according to a 2D space defined by location
and duration [269, 273]. Location SIIDs arise “from within” the user, “from
without” the user, and might have a “mixed” nature. “From within” SIIDs
are present in almost every context as they arise from user’s internal states,
e.g., mood, emotions, being asleep [273]. Meanwhile, “from without” SIIDs are
caused by the surrounding context and can be eliminated or reduced, if the
context is removed [273]. Finally, as the names speaks for itself, “mixed” SIIDs
are caused due to both the context and internal state of the user, e.g., a visually-
impaired user interacting with the device under bright light. In terms of duration,
Wobbrock et al. distinguish ephemeral (short-term and quickly changing, e.g.,
sleeping, drunkenness) and enduring (long-term or permanent, e.g., blindness,
arthritis) SIIDs [273].

Hence, one other potential direction for SIIDs research is to investigate SIIDs
according to the above-mentioned 2D space [273]. For example, very few works
have looked into the “from within” SIIDs, such as user affect and emotional
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state, including our work presented in Chapter 5. Several works have looked
into emotions and mood during mobile interaction, e.g., [159, 164, 230, 232, 262];
however, research has not investigated user mood or emotions from the per-
spective of situational impairments. For example, Mehrotra et al. [164] in their
work investigate the relationship between the user emotions and application use
behaviour. Similarly, work presented in [232] investigates causal relationship
between the applications usage behaviour and user emotions. Nevertheless, the
aforementioned papers did not measure the performance during mobile inter-
action and did not investigate the effects of user’s emotional state on mobile
interaction. Thus, the effects of “from within” SIIDs on mobile interaction remain
as a subject for future investigation.

Another aspect to consider when conducting research on SIIDs is the personal
and individualistic characteristics of each user. However, designing and build-
ing adaptive interfaces to consider personalised behaviour and design might be
costly and resource-consuming [273]. Nevertheless, Gajos et al. demonstrate that
these challenges are solvable by using optimisation algorithms and formulating
cost functions [66]. Hence, adaptive interfaces would record user individual-
istic preferences and abilities, and consider them in familiar and unfamiliar
situations [273]. Moreover, researchers should develop and provide a better
understanding and judgement of SIIDs and situations in order to decide if the
adaptation should take place at all or simply advise the user not to engage in a
certain task when they are situationally-impaired. This is crucially important for
situations that might come at a high cost, especially when visual and auditory
attention needs to be directed to a task of a greater significance (e.g., interacting
with a mobile device while crossing a busy intersection).

Finally, scientists conducting research on SIIDs should expand the research
scope outside the context of mobile devices. For example, people might be
situationally-impaired when using other technology (e.g., musical instruments [9],
smartwatches [263], wearable sensors [264], smartspeakers [93], tabletops [241,
254], tablets [101], public displays [73, 74, 160], miniaturised NIRS scanners [105,
123] and many others). Therefore, given the prevalence of different technology
on the market and its availability to the general population, it is important to
improve the accessibility of these devices by studying user experience under
different SIIDs.



Chapter 10

Conclusion

This thesis systematically quantifies the effects of situationally-induced impair-
ments and disabilities, namely ambient noise, stress, and dim ambient light
on mobile interaction through common mobile tasks: target acquisition, visual
search, and text entry. This thesis also offers a mechanism for sensing cold-
induced situational impairments. The results of the studies presented in this
thesis demonstrate that different types of ambient noise affect human perfor-
mance on different smartphone tasks. For example, music shortens the target
acquisition time, while decreases the target acquisition accuracy. Similar to music,
urban noise decreases the target access time; however does not influence the
accuracy of target acquisition. Nevertheless, urban noise decreases the target
memorisation time – an aspect of the visual search task, as well as increases time
per character entry in the text entry task. Furthermore, meaningful speech similar
to urban noise negatively affects text entry as it prolongs the time per character
entry. The effects of internal factor – stress – was also measured on mobile in-
teraction performance. Our findings show that stress shortens the target access
time, however increases the touch offset size, hence deteriorates the accuracy of
touch. Finally, we also studied the effects of dim ambient light and report that
under dim ambient light target access time increases while the accuracy of touch
drops as well as the target memorisation time increases.

Furthermore, this thesis presents a methodology that enables a fair compari-
son of the magnitude of the effects of different SIIDs on mobile interaction. First,
we recommend using the similar variables that quantify mobile interaction per-
formance under different SIIDs to measure their effect. Second, it is important
for each of the experiment to contain a baseline condition to record mobile inter-
action performance without the influence of SIIDs. Finally, when comparing the
effects of different SIIDs to each other, it is necessary to compare a percentage
growth/drop in performance respective to the baseline condition, rather than
manipulating direct comparisons between the effects.

We then recommend using smartphone’s battery temperature for sensing cold-
induced SIIDs. We demonstrate that smartphone battery temperature correlates
highly with human finger temperature in cold and warm environments. We
advocate that our method is applicable during continuous interaction with the
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device and enables off-the-shelf smartphones to sense cold-induced SIIDs. Hence,
being aware of this information, off-the-shelf smartphones can then adapt the
interface accordingly to accommodate the effects of cold-induced SIIDs.

In addition, we argue that providing a systematic understanding of the effects
of underexplored SIIDs is the pillar of SIIDs research agenda. Better under-
standing of the effects of different SIIDs enables further construction of sensing
mechanisms, creation of techniques to model SIIDs and user behaviour under
SIIDs, as well as interface adaptation to accommodate for SIIDs. We foresee
that future directions for SIIDs research should focus on studying the effects
of combined SIIDs and SIIDs that come “from within” the user (e.g., emotions).
Furthermore, the scope of SIIDs research should be extended outside mobile
devices by considering their effects on other technology (e.g., smartwatches,
smartspeakers). Finally, a user’s personal and individualistic characteristics
should be considered when conducting future research on SIIDs.
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